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Droughts, Deluges, and (River) Diversions: Valuing  
Market-Based Water Reallocation†

By Will Rafey*

This paper develops and applies a method to value water trading on a 
river network. The framework relies on regulatory variation in diver-
sion caps to identify production functions for irrigated farms, then 
uses the estimated shadow values to assess the market’s reallocation. 
I apply this framework to the largest water market in human history, 
located in southeastern Australia. Observed water trading increased 
output by 4–6 percent from 2007 to 2015, equivalent to avoiding an 
8–12 percent uniform decline in water resources. Reallocation and 
average surplus both increase substantially during drought, imply-
ing that water markets can be most valuable when climatic variabil-
ity is most severe. (JEL D23, D24, Q12, Q15, Q25, Q54)

Water is necessary for human life and most forms of economic activity, but uncom-
monly allocated through markets. Even as water scarcity and variability intensifies 
across the world, it is likely that less than 1 percent of the freshwater withdrawn 
worldwide is traded each year.1 Economists have sought to explain these institutions 
through two unique aspects of water resources. First, many existing water alloca-
tion schemes were designed by hydrologists and engineers in past eras. Entrenched 
political interests can impede reform, even despite large changes in the underlying 

1 Instead, water regulators typically allocate water through nonmarket mechanisms, such as quotas based on 
landholdings, records of past usage, or historical priority. See, e.g., Coman (1911); Libecap (2011); and Barbier 
(2019). For the 1 percent, see the calculation in online Appendix B.4.
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environment. Second, while water markets can improve efficiency under ideal con-
ditions, the practical realities of a river system mean that trading opportunities in 
an actual river network may be costly, uncertain, or manipulable. Flow constraints, 
noncompetitive conduct, and liquidity constraints can each dampen, or even reverse, 
the gains from trade that are implied in competitive, frictionless models.2

This paper contributes a new approach to estimate the value of market-based water 
reallocation in a way that is sensitive to these evolving hydrological constraints on 
trade, without assuming that water is valuable or that trade is efficient. The framework 
takes advantage of new data on water rights, trades, and agricultural production in the 
largest water market in human history, located in southeastern Australia. I value the 
water market in two steps: (i) estimate a model of irrigated agricultural production 
to recover the distribution of water value functions; (ii) compare welfare (producer 
surplus) under observed pre- and posttrade water allocations. The estimates allow me 
to value reallocation within the annual market across a range of environmental condi-
tions, and show how this value depends on hydrological variability.

I apply this empirical framework to study irrigated farms trading water in a con-
nected river network in southeastern Australia, where rainfall is highly variable 
and environmental regulation has capped water diversions since the mid-1990s. 
This water market is the world’s largest by trading volume and the most valuable, 
with 7,700 gigaliters or AU$22.7 (US$15.3) billion of water entitlements on issue 
(Wakerman Powell et al. 2019). Moreover, the irrigated agricultural industry is the 
single largest user of water in the global economy, accounting for more than 70 
percent of all water withdrawals. In this context, I ask the following questions: how 
valuable is observed market-based water reallocation, relative to fixed water rights? 
Does the market help farms adapt to evolving water scarcity and other climate and 
productivity shocks? How does water reallocation, and the estimated value of trade, 
depend on natural sources of variability?

I find that water trading increased irrigated output for the farms in the data by 4–6 
percent, averaged over the sample period 2007–2015. Put differently, without water 
reallocation through the annual market, output would fall by the same amount as if 
farms faced a uniform reduction in water resources of 8–12 percent. By comparison, 
government climate models for this region predict surface water resources to decline 
by 11 percent in the median year under a 1°C increase in temperature by 2030. 
These average gains conceal an increasing and highly convex relationship between 
water scarcity and the value of an annual water market. Water market access for 
water-scarce regions and farms creates net gains from trade ranging 7–11 percent of 
output; in contrast, during years of relative abundance or in regions that receive large 
water endowments, the realized value of water trading is, in many cases, statistically 
indistinguishable from 0 percent.

Obtaining these estimates of the value of trade involves at least two major empir-
ical challenges, which are compounded by some of the unique aspects of a river 
network mentioned above. First, agents’ true valuations of river diversions cannot 

2 Flow constraints, which evolve rapidly with precipitation and other river inflows, affect the timing and loca-
tion of delivery because water is heavy and incompressible, and cannot be quickly transported large distances or 
elevations (Chong and Sunding 2006, p. 243). The fixed costs of irrigation capacity give rise to concerns about mar-
ket power (Burness and Quirk 1979). For earlier discussions of water market imperfections, see Ciriacy-Wantrup 
(1967); Young (1986); and Colby (1990).
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be inferred from market prices without explicitly modeling information at the time 
of trading, market structure, transaction costs, and the curvature of utility to extrap-
olate total values from marginal values. Second, hydrological flow constraints make 
it difficult to predict or even to characterize the set of feasible trades on a river net-
work (Livingston 1995). Interconnected tributaries make the decentralized water 
market a multilateral bargaining game (Saleth, Braden, and Eheart 1991) for which 
the appropriate equilibrium concept is not obvious. Moreover, both valuations and 
trading opportunities depend on evolving water scarcity and other environmental 
conditions.

This paper’s two-step approach—recover production functions for irrigated 
farms, then use the estimated shadow values to assess the market’s reallocation—is 
designed to address these challenges. The first step, to estimate production functions 
that map irrigation volumes into agricultural output, relies on new producer-level 
panel survey data on irrigation, physical output, and local rainfall. The empirical 
framework allows productivity to differ arbitrarily across farms and crop types, and 
evolve stochastically as in Olley and Pakes (1996) and Ackerberg, Caves, and Frazer 
(2015). Farms anticipate future productivity improvements, taking into account how 
crop choices and land investments will affect their future production possibilities. 
Production differs across crop types and depends on water (through irrigation, rain-
fall, and evapotranspiration) as well as land, labor, and materials. Water scarcity 
evolves over the growing season: farms plant crops, then irrigate in response to 
within-year rainfall and water price shocks.

A significant concern in identifying the value of water in production is that (unob-
servably) more productive farms will likely use higher volumes of water, resulting 
in omitted variable bias (Marschak and Andrews 1944). Unobserved productivity 
may also persist over time and exacerbate this endogeneity problem. The empiri-
cal strategy combines a standard panel-data technique to control for time-varying 
productivity by inverting static materials demand (Levinsohn and Petrin 2003; 
Ackerberg, Caves, and Frazer 2015) with a water-rights-based instrument to identify 
irrigation-output elasticities.3 Water-sharing rules (or “diversion formulas”) evolve 
nonlinearly across regions and years in the river basin that I analyze, which provides 
a source of variation in farm-level irrigation decisions. The empirical strategy con-
trols for each farm’s expected productivity for each crop type, and the identifying 
assumption is therefore that a farm’s annual innovation in productivity is condition-
ally independent from its region’s water allocations, which I motivate through the 
mechanical nature of these rules.

The second step takes water trading data—linked to farms but not used to esti-
mate the production functions—to value the water market. The physical production 
functions, together with optimal materials and labor demand schedules, allow the 
evaluation of profits at observed pretrade water endowments and posttrade water 
inputs. This delivers a direct measure of the value of “realized” market-based water 
reallocation for the years that my data include. The advantage of this approach to 

3 An alternative method is to estimate the water-yield relationship with an experiment. Zwart and Bastiaanssen 
(2004, p.123) review more than eighty such agronomic field experiments, concluding that “the lesson learnt here 
is that [yield-evapotranspiration] functions are only locally valid and cannot be used in macro-scale planning of 
agricultural water management.”
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measuring reallocation is that it does not require specifying the set of feasible trades 
or an equilibrium concept for the water market. Therefore, the researcher does not 
need to model the river flow network, the agents’ information at the time of trading, 
or the search and bargaining protocol of the brokered bilateral market. The disadvan-
tage is that this calculation only recovers the realized value of annual trades for each 
farm under the market mechanism relative to the initial distribution of water rights.

The value of the empirical contributions obtained using this approach arise from 
three interrelated aspects of water that differentiate this resource from other goods. 
First, as mentioned above, water markets are rarely used. One simple explanation 
for the continued use of fixed allocation rules is that water transfers’ practical dif-
ficulties make the gains from water trading universally small. The paper’s findings 
reject this explanation. While such frictions may have prevented water markets from 
delivering benefits in the past, the estimates show that modern water infrastructure 
can enable markets to create substantial value despite constraints. In particular, the 
gains from trade that I find in the Australian context provide a counterpoint to a 
recent collection of empirical papers on water markets, which have led some to con-
clude that water markets have not realized their potential. This view reflects findings 
of limited or negative realized gains from trade in places such as California, Chile, 
and Spain, attributed to transaction costs (Regnacq, Dinar, and Hanak 2016), local 
protectionism (Hagerty 2019), noncompetitive conduct (Hantke-Domas 2017), or 
liquidity constraints (Donna and  Espin-Sánchez 2018). In contrast to these case 
studies, this paper shows that a well-developed, advanced market mechanism can 
reallocate water swiftly and create value when water is scarce, yet have a value close 
to zero in periods of abundance.

Second, water is naturally variable, and there is broad consensus that climate 
change will intensify this variability.4 This paper finds that the gains from trade 
increase substantially during drought and for places experiencing relative water 
scarcity, implying that water markets can help economies adapt to natural water 
variability. Many have suggested that water markets may provide valuable flexi-
bility to accommodate climate shocks (e.g., Debaere et al. 2014; Anderson 2015). 
This paper is the first to demonstrate empirically that water trading can substantially 
increase agricultural output in the presence of such climatic variability. This finding 
also implies that retrospective analyses of water trading may understate its prospec-
tive benefits, unless the historical data include variability comparable to that pre-
dicted by climate models. For policymakers considering the value of transitioning to 
water markets, the results imply that a river basin’s current (and future) hydrological 
variability should be critical aspects of such assessments.

Third, water flows downstream and is very heavy, making the set of feasible 
trades on a river network a complicated function of evolving hydrological con-
ditions. Conventional approaches to value water markets address this difficulty 
through various assumptions about these markets’ contractual, informational, and 
competitive features. Differences in these assumptions have led to conflicting results 
and conflicting guidance on water markets. This paper’s final empirical contribution 

4 Rising temperatures accelerate the hydrological cycle (Oki and Kanae 2006), intensifying droughts and del-
uges. Climate models predict large declines in water resources for irrigation (Elliott et al. 2014) and greater uncer-
tainty over future river inflows (Schewe et al. 2014).
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is in developing and applying a new framework to value water markets that is more 
robust to these differences. The key point is that the gains from trade are not gener-
ally identified without data on agricultural production linked to trade flows. Without 
such data, depending on a researcher’s identifying assumptions, the same observed 
water allocation that differs from some ideal first best may lead to a finding of 
substantial water misallocation (and tremendous prospective gains from trade) or, 
alternatively, of large transaction costs or frictions that rationalize the absence of 
trade (and negligible gains from trade). This paper overcomes this potentially severe 
identification issue through data on the joint distribution of water trades and produc-
tion decisions, as well as a model of agricultural production consistent with a variety 
of potential water market outcomes.

Broadly speaking, the existing literature has taken three approaches to learn 
about the value of water markets, and this paper’s approach has advantages relative 
to each. The first and most common approach calculates the prospective value of 
trading from a profit-maximizing water allocation across competing uses (Flinn and 
Guise 1970).5 This paper follows much of this work in assuming that agricultural 
data contain information about the distribution of water values. The key differences 
lie in the new model to identify and estimate irrigated agricultural production func-
tions, which imposes fewer restrictions on the unobserved differences across farms, 
and in the counterfactual analysis, which contrasts pre- and posttrade water alloca-
tions within an existing water market, rather than assuming that water trading will 
maximize agricultural profits.

A second approach focuses on trade flows in actual water markets (Colby 1990). 
More recent versions of these studies identify water demand and transaction costs 
from equilibrium trading conditions and revealed preference, then simulate an equi-
librium with lower transaction costs or fewer trading constraints.6 This paper shares 
with these studies the concern that trading barriers and constraints may confound 
earlier research designs, and like these papers, the empirical strategy requires data 
on water reallocation from an actual water market. The key differences are that, by 
relying on a model of agricultural production, it does not need to assume that trade 
flows are an equilibrium outcome to identify preferences or transaction costs. This 
sacrifices an opportunity to learn about the sources of trading frictions, but avoids rul-
ing out a range of unobserved trading constraints and forms of water market conduct.

A final approach consists of applying hedonic methods to compare places with and 
without tradable water property rights.7 These research designs can be informative 
about the value of well-defined water rights in general, but typically cannot separately 
identify the value of securing property rights from the value of trading. In contrast, 

5 These studies often calibrate regional water value functions from crop data and other sources (Vaux and Howitt 
1984; Dinar and Letey 1991), then solve for water market allocations under a fixed set of hydrological constraints 
(Sunding et al. 2002; Peterson et al. 2005; Gupta, Hughes, and Wakerman Powell 2018).

6 These simulations use various approaches to identify demand from transaction data, such as calibrating water 
demand with external estimates (Edwards et al. 2018), imposing general equilibrium conditions to infer variable 
trade costs from price differentials (Regnacq, Dinar, and Hanak 2016; Hagerty 2019), or using auxiliary financial 
data to proxy for liquidity constraints (Donna and Espin-Sánchez 2018).

7 Recent work examining the redefinition (or “adjudication”) of historical water rights in the western United 
States includes event studies of the Snake River Basin (Browne 2017), the Rio Grande Valley (Debaere and Li 
2017), and the Mojave Desert (Ayres, Meng, and Plantinga 2019). These studies infer a value of water rights from 
the differential evolution of land values for parcels with and without adjudication.
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this  paper’s framework analyzes gains from trade within an existing water market; its 
counterfactuals make within-farm comparisons, rather than comparisons across farms 
that face different—and potentially endogenous—water property regimes; and the 
resulting distribution of gains from trade across farms can be used to analyze channels 
of water market value, such as the dispersion and intensity of local environmental 
shocks.

More generally, this paper contributes to a growing literature studying the rela-
tionship between misallocation and factor market structure. To assess misallocation, 
these studies often estimate models of firm production.8 A core tension in applying 
these methods lies in maintaining assumptions to identify production functions and 
productivity without ruling out potential sources of misallocation due to incomplete 
or imperfect factor markets. Specifically, this paper contributes to the literature on 
using control functions to estimate production functions (Olley and  Pakes 1996; 
Levinsohn and Petrin 2003; Ackerberg, Caves, and Frazer 2015), where unobserved 
input price variation typically poses a threat to identification. My approach over-
comes this challenge by using a regulatory source of variation to identify the model, 
which differs from some recent work that relies on instruments constructed from 
endogenous variables, such as lagged input decisions or prices (De Loecker et al. 
2016; Doraszelski and Jaumandreu 2018).

The remainder of this paper is organized as follows. Section I describes irrigated 
agricultural production, the institutional background, and the data used. Section II 
then introduces an econometric model of water-based agricultural production in a 
regulated river system. Sections III and IV describe the main empirical strategy, its 
key restrictions, and parameter estimates and robustness. Section V analyzes the 
realized gains from trade. Section VI concludes.

I.  Irrigated Farms and Water Trading

This section describes the role of water in agricultural production in the river net-
work and the regulatory and market institutions that govern river diversions. These 
production possibilities determine the value of reallocating water across farms, within 
the constraints imposed by the natural and regulatory environments. Section IA intro-
duces the data sources used, then Section IB and IC describe the agricultural produc-
tion process and differences across operation types. Section ID outlines the institutions 
that regulate water rights, river diversions, and trade. Sections IE and IF discuss pat-
terns of water trading in the data indicating potential sources of gains from trade.

A. Data Sources

The main analysis uses four data sources from 2007–2015, taking observations 
for each of nine Australian fiscal years. First, the primary dataset is new data on 
water trading in the southern Murray-Darling Basin (sMDB) from the 2006–2007 

8 For example, evaluations of environmental and energy markets, such as Carlson et al. (2000); Borenstein, 
Bushnell, and Wolak (2002); and Fowlie, Reguant, and Ryan (2016); as well as studies of misallocation across 
electricity generators (Cicala 2022); tobacco supply chains (Rubens 2020); and oil cartels (Asker, Collard-Wexler, 
and De Loecker 2019).
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to 2014–2015 annual waves of a rotating panel survey conducted by the Australian 
Department of Agriculture.9 The survey collects characteristics, input choices, and 
production levels from irrigated farms, linked with records of water trades and water 
rights owned. Second, I augment this farm-level input-output data with spatial envi-
ronmental data, including farm-level rainfall and evapotranspiration, measured by 
the Australian Bureau of Meteorology. Third, I obtain regulatory records of regional 
water allocation caps from state governments, which I match to farms by region and 
year.10 Fourth, I draw on administrative water trading data on transaction prices and 
trade flows from the Murray-Darling Basin Authority (MDBA), which regulates 
the water market, as well as from state governments and private brokers.11 Online 
Appendix B contains more details.

B. Irrigation, Rainfall Shocks, and Technology

I focus on four inputs in production used by all farms in the sample: land, irriga-
tion, rainfall, and other flexible factors (labor and materials).

Land and Scale of Operation.—The average irrigated farm surveyed produces 
annual output valued at approximately AU$700,000, irrigates 296 hectares (ha), and 
operates a total area of 563 ha. Size varies by operation type, as discussed below, 
and the size distribution is skewed, with the median farm irrigating 104 ha of crops 
or pasture with a total area operated of 189 ha (online Appendix Table A2). In terms 
of revenue, these farms are small firms relative to broader industrial classifications; 
in terms of area operated, these are large farms, with the median farm corresponding 
to the seventy-fifth percentile farm size in the US agricultural industry. Farm man-
agers average 50.9 years old.

Irrigation Volumes.—Irrigation inputs are recorded in megaliters (ML) at the 
farm-crop-year level. Water costs are significant for farm operations and, in many 
years, trading accounts for a substantial fraction of water used. The average farm 
uses 680 ML for irrigation (Table 1), roughly the average annual consumption of 
4,000 Australian households (ABS 2016). River water is the primary source of irri-
gation for these farms, with groundwater accounting for only between 10–15 per-
cent of irrigation in the sMDB, due to limited volume and salinity (Turral et  al. 
2005). Valued at average market prices—AU$235 per megaliter over all years—this 
implies total irrigation costs equal to 13.8 percent of revenue from 2007–2015.

9 Accessed through a nondisclosure agreement signed by the author. Hughes (2011) uses an earlier version of 
these data to estimate short-run marginal products of water for Department of Agriculture research purposes. The 
survey is conducted by its division of agricultural economists, the Australian Bureau of Agricultural and Resource 
Economics and Sciences (ABARES), which collects a rotating random subsample of farms each year (ABARES, 
2007-2015). Each data point entails an on-site visit by an analyst lasting four to six hours. See Ashton and Oliver 
(2014, pp. 35–36) for more details on the survey construction.

10 I use records of total water entitlements and annual allocations, from the New South Wales Office of Water, 
Victorian Water Register, and the South Australian Department of Environment, Water and Natural Resources, 
collated by Hughes, Gupta, and Rathakumar (2016, pp. 45–46).

11 Market-level records of the price, volume, date, and origin- and destination-region for every water trade 
between 2008–2015, are obtained from the MDBA and the now-defunct National Water Commission. For 2007, 
which predates federal reporting requirements, I compile price data from various state government registries and a 
private broker.
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Farms adjust irrigation between years in response to changing economic and 
environmental conditions. These adjustment possibilities differ across farm types, 
as discussed below. Over all farms, the average within-farm standard deviation in 
irrigation from 2007 to 2015 is 245.8 ML or 32.7 percent of the mean. Across farms, 
irrigation levels vary substantially, with an interquartile range more than twice the 
median, in part reflecting the dispersion in farm sizes discussed above. The scale of 
operation (area of land irrigated) and farm type (discussed below) can explain about 
two-thirds of the dispersion in irrigation levels across farms (​​R​​ 2​  =  0.68​).

Rainfall and Evapotranspiration.—The total water available for a given crop 
over the growing cycle also depends on precipitation. I obtain these data from the 
Australian Bureau of Meteorology (BoM)(BoM 2005–2020a). Seasonal rainfall data 
are matched to each farm with georeferenced data by ABARES analysts. The value of 
rainwater for crop growth depends on when the rainfall occurs relative to the planting 
and growing seasons, as well as other environmental factors, such as temperature, 
wind, humidity, and sunlight, which affect the rate of crop evapotranspiration (the 

Table 1—Water Rights, Trading, and Prices

​N × T​ Mean St. dev. q10 q25 q50 q75 q90

Panel
Total irrigation, ML ​2,059​ ​679.0​ ​1,377.1​ ​18​ ​70​ ​210​ ​641.9​ ​1,564.6​

Permanent rights, nominal ML ​2,059​ ​876.4​ ​1,246.6​ ​74.8​ ​160​ ​406​ ​1,084​ ​2,257.1​
Permanent rights, realized ML ​2,059​ ​519.1​ ​815.9​ ​31.5​ ​84​ ​231.8​ ​600.5​ ​1,268.9​

Buy annual water, ​​{0, 1}​​ ​2,059​ ​0.321​ ​0.467​ ​0​ ​0​ ​0​ ​1​ ​1​
Volume bought, ML ​661​ ​288.7​ ​462.2​ ​20​ ​40​ ​100​ ​320​ ​736​
Sell annual water, ​​{0, 1}​​ ​2,059​ ​0.199​ ​0.399​ ​0​ ​0​ ​0​ ​0​ ​1​
Volume sold, ML ​409​ ​135.3​ ​155.7​ ​20​ ​42​ ​90​ ​160​ ​300​

Buy entitlements, ​​{0, 1}​​ ​976​ ​0.092​ ​0.289​ ​0​ ​0​ ​0​ ​0​ ​0​
Entitlements bought, nominal ML ​90​ ​251.7​ ​528.4​ ​1.9​ ​8.5​ ​50​ ​250.2​ ​522.5​
Sell entitlements, ​​{0, 1}​​ ​976​ ​0.154​ ​0.361​ ​0​ ​0​ ​0​ ​0​ ​1​
Entitlements sold, nominal ML ​150​ ​298.2​ ​499.9​ ​2.9​ ​20​ ​130.5​ ​356.8​ ​702.5​

Within
Ever trade annual water rights, ​​{0, 1}​​ ​1,094​ ​0.600​ ​0.490​ ​0​ ​0​ ​1​ ​1​ ​1​
Ever buy annual water rights, ​​{0, 1}​​ ​1,094​ ​0.407​ ​0.491​ ​0​ ​0​ ​0​ ​1​ ​1​
Ever sell annual water rights, ​​{0, 1}​​ ​1,094​ ​0.271​ ​0.444​ ​0​ ​0​ ​0​ ​1​ ​1​
Ever buy and ever sell, ​​{0, 1}​​ ​1,094​ ​0.078​ ​0.268​ ​0​ ​0​ ​0​ ​0​ ​0​

Annual trade frequency ​656​ ​0.829​ ​0.248​ ​0.500​ ​0.600​ ​1​ ​1​ ​1​
Annual buy frequency ​656​ ​0.535​ ​0.432​ ​0​ ​0​ ​0.500​ ​1​ ​1​
Annual sell frequency ​656​ ​0.349​ ​0.434​ ​0​ ​0​ ​0​ ​1​ ​1​
Annual buy and sell frequency ​656​ ​0.055​ ​0.204​ ​0​ ​0​ ​0​ ​0​ ​0​

Market
Annual regional water price, AU$/ML ​2,059​ ​234.5​ ​198.9​ ​24.6​ ​55.0​ ​160.3​ ​338.7​ ​621.9​
Transaction-level water price, AU$/ML ​80,599​ ​227.3​ ​252.8​ ​40​ ​62​ ​123​ ​309​ ​500​
Transaction-level volume, ML ​80,599​ ​100.8​ ​275.3​ ​7​ ​15​ ​40​ ​100​ ​200​

Notes: Farm-level irrigation, water rights, and trading from 2007 to 2015. Volumes denomi-
nated in megaliters (ML). Nominal permanent rights calculated as the farm’s share of the total entitle-
ment volume on issue. Realized permanent rights reported as the farm’s share of the actual entitlement 
volume in that year. Number of observations falls for permanent rights (entitlements) because they are 
only defined for farms observed at least twice and each farm observation after the first. Annual regional water prices 
are defined for each farm in each year as the volume-weighted average price over all transactions occurring in that 
farm’s region in that year.

Sources: ABARES Survey of Irrigated Farms; MDBA administrative water transaction data.
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plant’s natural water demand). I account for these seasonal aspects of productionby 
adapting the modern approach to calculating crop-specific evapotranspiration, the 
Penman-Monteith equation (Allen et al. 1998), which is widely used by farmers for 
irrigation planning and scheduling, as well as government agencies to summarize the 
effect of evolving environmental conditions on crop water requirements.

This approach to account for evapotranspiration requires three auxiliary data 
sources in addition to local rainfall over time: first, reference evapotranspiration, 
which the BoM calculates using daily data on rainfall, temperature, humidity, wind, 
and sunlight, as well as soil characteristics (BoM 2005–2020b); second, evapotrans-
piration coefficients for the growing cycles of each crop, which I take from standard 
reference manuals (FAO 1998a); third, growing season lengths and approximate 
planting dates for each crop, which I obtain from various Australian agricultural 
industry sources (USDA IPAD 2022). These three sources allow me to calculate 
Penman-Monteith monthly crop evapotranspiration on each farm. To incorporate 
this measure into the model of annual production, I take “effective rainfall” for each 
farm-crop-year, defined as the integral of rainfall over that crop’s growing season, 
limited by the water requirements over time implied by evapotranspiration.

Natural water availability varies substantially across both space and time. Annual 
rainfall, reported in online Appendix Table A1, averages 403 millimeters (mm) but 
ranges over more than an order of magnitude from 112.2 to 1,950.8 mm across farms 
and years. Average annual rainfall rises to three to four times its drought levels once 
the drought abates (2010–2012), then diminishes again after 2013. The standard devi-
ation of annual rainfall across years (169 mm) is comparable to its spatial variation 
across farms within each year (136 mm). Average effective rainfall for crops, 221 mm, 
is well below annual rainfall, since some seasons matter more for crop production than 
others (and some not at all), and evapotranspiration constraints occasionally bind.

Labor and Materials.—In addition to land and water, the main remaining variable 
costs to irrigators are labor and materials. Labor is measured in weeks and includes 
owner-operator labor, other family labor, and hired labor. Wages, which average 
AU$684.20 per week, exhibit moderate variation across farm-years, with a standard 
deviation of about one-fifth the mean. Materials consist of all fertilizer, electricity, 
fuel, pesticides, seed, and packing costs that are used by the farm. I exclude services. 
These expenses, reported in online Appendix Table A2, comprise 20.4 percent and 
22.3 percent of all revenue, respectively, or 24.2 percent and 19.4 percent for the 
median farm-year. In estimation, I require that farms have nonzero materials inputs, 
which holds for 99.6 percent of farms in the original sample.

C. Farm and Crop Types

Irrigation plays different roles in distinct types of agricultural production. The 
major irrigators in the sMDB fall into three categories or “operation types”: (i) 
perennial farms, primarily growing perennial irrigated crops on orchards or vine-
yards; (ii) annual farms, specializing in yearly crops, such as wheat and rice; and 
(iii) dairy farms, which grow annual pasture and also some annual crops. In the 
medium run, farms specialize: 86.8 percent of farms operate in only one of these 
three categories.
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Within each operation type, farms grow multiple crops. I group crops (e.g., wheat, 
rice) into four crop types: (i) perennial irrigated, (ii) annual irrigated, (iii) annual 
nonirrigated, and (iv) annual pasture. This classification reflects several aspects of 
agricultural production (Hughes 2011). First, adjustment margins differ by crop 
type. Perennial irrigators grow perennial crops, such as fruits and wine grapes, on 
orchards and vineyards. Trees and vines take five to ten years to mature and require 
continuous watering (Ashton and van Dijk 2017). In contrast, annual crops and pas-
ture are replanted and sown at the beginning of each year.

Second, water-intensity varies substantially across crop types, as shown in online 
Appendix Table A1. Most obviously, nonirrigated annual crops require zero irriga-
tion. This creates an important margin of adjustment for annual operators, who may 
plant both irrigated and nonirrigated annual crop types. Irrigation rates are similar 
across perennial and annual irrigated crops, averaging 5.72 and 5.75 megaliters per 
hectare, respectively, but are much lower for pasture (2.78 ML per hectare).

Third, dairy farmers primarily irrigate annual pastures used to feed dairy cows. 
The average dairy operation surveyed has 511.8 milk cows on hand, with an average 
within-farm standard deviation in the nine-year sample of 11.6 percent of the mean, 
implying moderate adjustments in herd size. I distinguish “annual irrigated pas-
ture” from “annual irrigated crops” both because water application rates differ and 
because dairy farms growing pasture have an additional outside option to purchase 
feed directly, which I also observe and include in the production function below.

Consistent with these differences in production, online Appendix Table A1 shows 
that revenue per hectare differs substantially across the four crop types, with peren-
nial crops generating higher average revenues (about AU$11,000 per hectare) com-
pared with annual irrigated crops and pasture (AU$5,000 and AU$6,300 per hectare) 
and nonirrigated annual crops (AU$400 per hectare).

D. River Regulation and Trade

River water in the sMDB is regulated at federal, state, and regional levels. Federal 
regulation under the Australian Government 2007 Water Act restricts total diversions 
to sustain minimum river flows and the integrity of environmental assets. Regional 
“allocations” (diversion limits) in each year are then determined by state laws 
and intricate interstate water-sharing agreements according to formulas described 
below. Appropriative water rights, or “entitlements,” are owned by farms, indexed 
by region, and denominated in proportional shares of the annual regional allocation.

The total volume of allocations varies in each year according to fixed, regional 
diversion formulas mandated by Schedule E of the Water Act. Inputs into these for-
mulas include the prior year’s dam storage levels, the winter’s snowmelt, and expected 
river inflows calculated from inflow models calibrated with historical climate data. 
Online Appendix Figure A1 draws realized allocation paths for each region. Realized 
allocations averaged 67.2 percent of the volume of issued entitlements over the sample 
period 2007–2015, with allocations in some regions falling to nearly zero in the worst 
drought year (2008), and rising slightly above 100 percent at the end of the drought 
in 2011.

Water trading requires a legal framework that allows for exchange. A prerequisite 
is the unbundling of water rights from land; appropriative rights replaced riparian 
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rights in Australia at the end of the nineteenth century, but individual users could 
not hold water entitlements until the 1980s. Initially, these entitlements were gen-
erally defined based on historical usage (NWC 2011), with few transfers prior to 
the Water Act. Annual allocation trade, in contrast, dates to the early 1990s. Water 
trades occur bilaterally between farms, typically through water exchange interme-
diaries. The Australian Competition and Consumer Commission, which regulates 
these intermediaries, reported ad valorem commission rates for nine intermediaries 
of 1–4 percent (ACCC 2010, Appendix 1).

The river network’s hydrological connectivity then determines the physical con-
straints on water trading at a given moment in time. Flow constraints are a func-
tion of infrastructure as well as evolving environmental conditions (MDBA 2013). 
River water originates in the Snowy Mountains Scheme, a collection of reservoirs 
and dams with 22,000 gigaliters of storage capacity, then flows westward through-
out the southern connected zone (online Appendix Figure A2), subject to the river 
network’s minimum and maximum flow constraints. Schedule D of the Water Act 
specifies baseline rules for allowable trades, complemented by additional transfer 
rules from river operators at MDBA and state governments. Water cannot typically 
move upstream, whereas downstream transfers are limited by upstream dam capac-
ity, channel flow capacity, and transmission losses. Flow constraints on interregional 
trade are automatically triggered as temporary bans when net trade balances reach 
certain thresholds (Hughes, Gupta, and Rathakumar 2016, p. 32). These constraints 
affect trade directly. As the state government of Victoria advises,

People can seize trade opportunities quickly. If you plan to trade water to 
the Victorian Murray, you or your broker need to keep an eye on the limits 
that apply to you. Even when limits are reached, new trade opportunities 
can reopen during the season if the inter-valley trade balance decreases. 
(VDEPI 2014)

In sum, realized constraints on trade depend on natural inflows, diversions for 
irrigation, and environmental diversions for conservation, as well as other river 
operation objectives (such as the need to minimize evaporation) and state govern-
ment priorities.

E. Water Market Prices

The most immediate fact in the southern Murray-Darling water market is a clear 
correlation between annual prices and changing diversion limits (online Appendix 
Figures A1 and A3). Water allocation prices fluctuate across years by more than an 
order of magnitude, peaking at the height of the Millennium drought at AU$624 
per megaliter in 2008 and bottoming at AU$23 per megaliter in 2012. Rainfall, 
superimposed in Figure 1, and regional water allocations (online Appendix 
Figure A1) exhibit the inverse pattern, peaking at the drought’s end in 2011–2012.

In addition to annual water price fluctuations, water prices vary substantially 
within years. The whiskers in Figure 1, panel A illustrate wide interdecile intervals 
of yearly water price distributions, calculated over all water market transactions in 
that year. The standard deviation of transaction prices exceeds 70 percent of the 
mean in an average year. Online Appendix Figure A4 plots daily water spot prices 
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for two illustrative years. The high-frequency nature of this daily market implies 
that even farms with the flexibility to adjust planting at the start of each year face 
substantial water price uncertainty.

Although water prices are less dispersed across the river network than across 
time, moderate interregional daily price dispersion exists, with a coefficient of 
variation of 12 percent for a median day. Restricting water price comparisons to 
trades within a region eliminates about half of this dispersion, with the median 
daily within-region standard deviation of water prices ranging 5–7 percent of the 
mean (online Appendix Table A4).

F. Farm-Level Water-Trading Patterns

Water trading is an endogenous decision, but it is useful to understand in a sta-
tistical sense how the decision to trade correlates with observables. Together with 

Figure 1. Water Market Outcomes and Rainfall, 2007–2015

Notes: Panel A: average annual allocation water prices (whiskers: interdecile interval of transaction price distribu-
tion) and mean (red) and interdecile interval (ribbon) of farm-level rainfall adjusted for evapotranspiration. Panel 
B: fraction of total irrigation volumes bought on the annual water market in each year ​​(blue bars) and the same 
rainfall series (in levels).

Sources: ABARES Survey of Irrigated Farms; MDBA, state government registries, and private water broker.
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evolving water scarcity, water trade participation and volumes vary substantially 
across years. Most striking is the evident comovement between annual scarcity and 
reallocation. Figure 1, panel B shows water trade volumes over time against rainfall. 
Farms trade the largest fraction of their water inputs at the height of the drought: net 
water purchases comprise 28.7 percent of irrigation in 2008–2009, compared with 
12.6 percent in 2010–2015.

Trade volumes also closely track water market participation. While more than half 
(60 percent) of farms trade annual water allocations in at least one year, participation 
in each year ranges from 18 to 66 percent of farms, falling to its lowest level when the 
drought abates in 2011. Participation decisions are strongly correlated over time, in the 
sense that farms who trade in at least one year will trade, buy, and sell in 82 percent, 
53 percent, and 35 percent, respectively, of all years in which they appear in the data 
(Table 1).

Geography and farm type also predict trade, with farms in the Murrumbidgee 
region more likely to sell and less likely to buy annual water allocations than their 
counterparts in other regions (online Appendix Table  A6). In contrast, farms in 
South Australia or growing annual crops are much more likely to buy. These patterns 
corroborate interregional trade flow data that show South Australia and Victoria are 
net importers and the Murrumbidgee is a net exporter during the period considered 
(Hughes, Gupta, and Rathakumar 2016, p. 15).

Evolving rainfall conditions are also a significant predictor of farm water trad-
ing. Table 2 shows results from a linear probability model of the indicator for trade 
regressed against rainfall and water endowments. Farms with relatively less rain-
fall in a given year are significantly more likely to buy annual water allocations 
(panel A, column 1). This correlation remains significant for farms with relatively 
lower rainfall given region (column 2), region-by-year (column 3), and farm fixed 
effects (column 4), indicating that rainfall shocks are important to explain farm 
water-trading decisions over time even after controlling for differences across years, 
regions, and operation types.

Taken together, these correlations indicate that annual water trading responds to 
changing environmental conditions and endowments. These correlations motivate 
the model below, which (i) controls for rainfall directly in the production function, 
(ii) distinguishes between crop types, and (iii) allows crop productivity to evolve 
differentially across farms, given that a farm’s operation type, year, rainfall, and 
permanent characteristics cannot fully explain residual differences in output or 
water trading.

II.  A Model of Irrigated Agricultural Production

To value the water trade flows described above, this section specifies an econo-
metric model of irrigated agricultural production. Farms combine land, irriga-
tion, rainfall, labor, and materials to produce output. Section  IIA defines each 
crop type’s annual production technology. Given the evolving, intra-annual uncer-
tainty over water prices and environmental shocks in the sMDB water market, 
Section IIB describes planting, growing, and harvest seasons and defines the tim-
ing of input choices within the year. Section IIC discusses the model’s remaining 
economic restrictions.
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A. Production

Production cycles occur in each year, indexed by ​t  ∈ ​ {0, 1, 2, …}​​, reflecting the 
annual nature of agricultural production. Farms, indexed by ​i​, inhabit the river basin. 
I abstract from issues of entry or exit.12 Each farm ​i​ specializes in annual, perennial, 
or dairy operations, and produces crop types ​c  ∈ ​ ​i​​​, where

 ​​ ​i​​  = ​

⎧

 
⎪
 ⎨ 

⎪
 

⎩

​

​{irrigated perennial, ∅}​,

​ 

if i is a perennial operation;

​ 

 

​

 

​

 

​      
{irrigated annual crops,

​ 
if i is an annual crop operation;

​
 
​
 
​
 
​      nonirrigated annual crops, ∅},​   ​   ​ ​ ​      

{irrigated annual crops, nonirrigated

​ 

otherwise;

​ 

 

​

 

​

 

​      

annual crops, irrigated pasture, ∅},

​ 

 

​ 

 

​

 

​

 

​​​​

as discussed in Section IC.

12 The ABARES survey is a random rotating panel, so it is not possible to determine if a farm not surveyed pre-
viously that enters the data is an entrant or if a farm that ceases to be surveyed has exited. While some farms change 
crop choices or owners, fewer convert to nonfarmland.

Table 2—Annual Water Trading Decisions and Rainfall

Dependent variable:

Buy, ​1​{​Δ​it​​  >  0}​​
(1) (2) (3) (4)

Panel A. Annual purchases
​ln​(​net_rainfall​​it​​)​​ ​−​0.162 ​−​0.059 0.00002 ​−​0.143

(0.032) (0.034) (0.035) (0.050)
​ln​(​water_endowment​it​​)​​ 0.006 0.019 0.022 ​−​0.080

(0.010) (0.010) (0.010) (0.026)

Year fixed effects ​✓​ ​✓​ ​✓​ ​✓​
Region fixed effects ​✓​ ​✓​
Region × year fixed effects ​✓​
Farm fixed effects ​✓​
Observations 2,059 2,059 2,059 2,059
Adjusted R2 0.111 0.139 0.184 0.397

Sell, ​1​{​Δ​it​​  <  0}​​
Panel B. Annual sales
​ln​(​net_rainfall​​it​​)​​ 0.141 0.029 ​−​0.00003 0.063

(0.030) (0.031) (0.032) (0.037)
​ln​(​water_endowment​it​​)​​ 0.040 0.026 0.023 0.044

(0.009) (0.009) (0.009) (0.023)

Year fixed effects ​✓​ ​✓​ ​✓​ ​✓​
Region fixed effects ​✓​ ​✓​
Region × year fixed effects ​✓​
Farm fixed effects ​✓​
Observations 2,059 2,059 2,059 2,059
Adjusted R2 0.084 0.126 0.165 0.459

Notes: The unit of observation is the farm-year. Regressions of the indicator for trading annual 
water rights on effective rainfall (annual rainfall adjusted for evapotranspiration), realized 
permanent water endowments, and fixed effects denoted by check marks. Every regression 
includes crop type fixed effects. Standard errors block-bootstrapped at the farm level (1,000 
iterations) in parentheses.
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In year ​t​, farm ​i​ allocates hectares of land, denoted by ​​K​ict​​​, to crop types ​c  ∈ 
​​i​​​. Given these planting decisions, farms choose irrigation volumes, ​​W​ict​​​, and other 
inputs, ​​X​ict​​​. The vector ​​X​ict​​​ includes labor, ​​X​ ict​  L ​​, and total materials, ​​X​ ict​  M ​​, for all farms, 
as well as feed, ​​X​ ict​  F ​​, and cows, ​​X​ ict​  D ​​, for dairy farms. Rainfall and evapotranspira-
tion, ​​E​ict​​  = ​ (​E​ ict​  R ​, ​E​ ict​  V ​)​​, enter production in terms of effective rainwater, defined in 
megaliters as

(1)	​ ​R​ict​​  = ​ (​E​ ict​  R ​ − ​E​ ict​  V ​)​​K​ict​​,​

which is the volume of rainwater, limited by evapotranspiration, incident to cropland.
I study aggregate physical output for each crop type ​c​, defined as ​​Q​ict​​  = 

​∑ ​c​k​​∈c​   ​​ ​ P​​c​k​​  0​​ ​Q​i​c​k​​  t​​,​ from ​​Q​i​c​k​​  t​​​ (tonnes) and ​​P​​c​k​​  0​​​ (Australian dollars per tonne) measured 
for crops ​​c​k​​​ in each type ​c​ as described in online Appendix B. Output for crop type ​
c​ on farm ​i​ in year ​t​ is given by

(2)​	 ​Q​ict​​  = ​ e​​ ​ω​ict​​+​ε​ict​​​  ​F​c​​​(​W​ict​​, ​X​ict​​, ​K​ict​​, ​R​ict​​)​

	 ≡ ​ e​​ ​ω​ict​​+​ε​ict​​​​​[​α​c​​​​(​W​ict​​ + ​ϑ​c​​ ​R​ict​​)​​​ ​ 
​σ​c​​−1

 _ ​σ​c​​ ​ ​ + ​(1 − ​α​c​​)​​K​ ict​ 
 ​ ​σ​c​​−1

 _ ​σ​c​​ ​
​]​​​ 

​  ​σ​c​​ _ ​σ​c​​−1 ​ ​β​cW​​

​​  ∏ 
j∈​{L,M}​

​​​​(​X​ ict​ 
   j ​ )​​​ 

​β​cj​​
​​,​

where ​​ω​ict​​​ is unobserved productivity and ​​ε​ict​​​ is measurement error. The specific 
form of ​​F​c​​​ in the second line of (2) is not important for identification.13 The nested 
constant elasticity of substitution (CES) form is chosen to allow irrigation-output 
elasticities to vary across farms through irrigation, rainfall, and land inputs. Note 
that (2) makes two assumptions to specialize the more general nested CES structure. 
First, rainwater is taken as a perfect substitute for irrigation, up to the conversion 
coefficient ​​ϑ​c​​​; second, the elasticity of substitution between labor, materials, and 

the water-land aggregate, ​​​ict​​  ≡ ​ α​c​​​​(​W​ict​​ + ​ϑ​c​​ ​R​ict​​)​​​ ​ 
​σ​c​​−1

 _ ​σ​c​​ ​ ​ + ​(1 − ​α​c​​)​​K​ ict​ 
 ​ ​σ​c​​−1

 _ ​σ​c​​ ​
​​, is taken 

as unity.
The annual production function defined in (2) assumes that output depends only 

on the total volume of irrigation and rainwater applied throughout the year. In prac-
tice, the timing of irrigation and rainfall throughout the season affects crop yields. 
While one major concern is rainfall occurring outside of the growing season or 
in excess of a crop’s watering requirements, the measure of effective rainfall that 
incorporates crop evapotranspiration, as well as the sophisticated irrigation schedul-
ing schemes used by most farms (Ashton and Oliver 2014), alleviates much of this 
concern.14 In addition, the annual production function will not capture the effects 
of irrigation on harvests in future years, a concern of particular relevance for trees 
and vines. For example, if a farm irrigates in some years to sustain trees for future 
years, without affecting the current year’s harvest, then the value of this water will 
not be captured by (2).

13 That is, given any functional form, the assumptions in Section III will identify ​​F​c​​​. 
14 A related concern is that seasonal shocks to rainfall or irrigation opportunities will affect irrigation schedul-

ing and lead two farms with the same annual irrigation and effective rainfall to produce different levels of output. 
Equation (2) approximates these shocks through productivity, but this will rule out intraseasonal gains from trading 
that arise from improved irrigation scheduling (Beare, Bell, and Fisher 1998).
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Crop Type Details.—The production parameters for irrigated crops in (2) are the 
distributional share ​​α​c​​  ∈ ​ [0, 1]​​ of water relative to land, the relative efficiency ​​ϑ​c​​​ of 
rainwater, the elasticity of substitution ​​σ​c​​  ∈ ​ [0, ∞)​​ between water and land, and the 
output elasticities ​​β​cj​​​ of water, labor, and materials, or ​​θ​c​​  = ​ (​α​c​​, ​ϑ​c​​, ​σ​c​​, ​β​cW​​, ​β​cL​​, ​β​cM​​)​​  
for irrigated crops, and ​​θ​c​​  = ​ (​α​c​​, ​σ​c​​, ​β​cW​​, ​β​cL​​, ​β​cM​​)​​ for nonirrigated crops.

In addition to irrigated pasture, milk production on dairy farms also depends on 
purchased feed and the number of dairy cows. Given that milk production is limited 
by the number of cows and the pasture or feed required to maintain them, I impose a 
zero elasticity of substitution between these two factors, extending (2) to

(3) ​ ​F​c​​  =  min​​{​​[​(1 − ​α​F​​)​​​ ict​ 
 ​(​σ​F​​−1)​/​σ​F​​​ + ​α​F​​​​(​X​ ict​  F ​)​​​ ​(​σ​F​​−1)​/​σ​F​​​]​​​ 

​  ​σ​F​​ _ ​σ​F​​−1 ​

​, ​ ​α​D​​ ​X​ ict​  D ​ _ 
1 − ​α​D​​ ​}​​​ 

​β​cW​​

​

	 × ​  ∏ 
j∈​{L,M}​

​​​ ​​(​X​ ict​ 
   j ​ )​​​ 

​β​cj​​
​​

for ​c  =  dairy​. To recover the Leontief form in (3) from the data, I assume that cows 
are not overfed in equilibrium, i.e.,

(4)	​​​ [​(1 − ​α​F​​)​​​ ict​ 
 ​(​σ​F​​−1)​/​σ​F​​​ + ​α​F​​​​(​X​ ict​  F ​)​​​ ​(​σ​F​​−1)​/​σ​F​​​]​​​ 

​  ​σ​F​​ _ ​σ​F​​−1 ​

​  ≤ ​   ​α​D​​ _ 
1 − ​α​D​​ ​ ​X​ ict​  D ​​

for all ​i​, ​t​, and ​c  =  dairy​, which is plausible given that herd size is predetermined 
by the time pasture is irrigated and feed purchased. This avoids estimation of the 
feed conversion ratio ​​(1 − ​α​D​​)​/​α​D​​​, although it can be recovered directly from the 
ratio of ​​X​ ict​  D ​​ to the pasture-feed composite if (4) holds with equality. Consequently, 
the production parameters to estimate for ​c  =  dairy​ are ​​θ​c​​  = ​ (​α​c​​, ​ϑ​c​​, ​σ​c​​, ​α​F​​, ​σ​F​​, ​
β​cW​​, ​β​cL​​, ​β​cM​​)​​.

Hicks Neutrality.—The main restriction in (2) is that the unobservable ​​ω​ict​​​ is 
multiplicatively separable from ​​F​c​​​, or “Hicks (1932) neutral.” Through this unob-
served term, total factor productivity differs arbitrarily across farms and crop types, 
allowing the marginal product of water to differ across otherwise identical farms in 
each year. However, Hicks neutrality rules out unobserved differences in irrigation 
efficiency at the farm-crop level, which may be a crucial aspect of the response to 
water scarcity. For robustness, I also consider other forms of ​​F​c​​​ that include differ-
ences in irrigation efficiency that take a known form, e.g., by allowing ​​α​c​​​ or ​​ϑ​c​​​ to 
depend on ​t​ or other observed farm characteristics such as the value of the farm’s 
irrigation equipment.

A final restriction on productivity is that, while farms anticipate their future 
productivity and make long-run decisions given these beliefs, farms cannot 
directly influence their unobserved productivity through investment. They can 
affect their future production possibilities through land use, for example, by real-
locating land from one crop type to another. However, a farm’s past irrigation, 
materials, and labor inputs cannot affect its current or future productivity within 
each crop type. This assumption also rules out unobserved actions that raise future 
performance.
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B. Timing of Agricultural Calendar

An important feature of the water market is within-year water price and rain-
fall uncertainty that resolves after planting decisions but before irrigation choices. I 
incorporate this feature with a growing season of length ​b  ∈ ​ [0, 1]​​. Farms plant at ​
t − 1​, commit to irrigation at ​t − b​, and then harvest output given by (2) at ​t​. This 
timing over planting, growing, and harvest seasons, summarized in online Appendix 
Figure A6, is based on my conversations with irrigators in the sMDB.

In each year, the agricultural calendar starts with the planting season, approxi-
mately April to June. At ​t − 1​, farms plant the season’s crops by allocating land ​​K​ict​​​ 
to each ​c  ∈ ​ ​i​​​. Dairy farms may also adjust their herd size, ​​X​ ict​  D ​​. The farm’s infor-
mation at ​t − 1​ includes its productivity, its land and dairy cow inputs, and all past 
decisions, prices, and endowments. I denote this information set as

(5) ​ ​​i,t−1​​  = ​​ (​​{​ω​icτ​​ , ​W​icτ​​ , ​R​icτ​​ , ​X​icτ​​ , ​K​icτ​​ , ​K​ic,τ+1​​, ​P​icτ​​}​​c​​, ​ρ​i,τ+1​​, ​​W 
–
 ​​r τ​​ , ​P​ iτ​ W​, ​P​ iτ​  L ​)​​

τ ≤t−1
​​.​

At ​t − b​, the growing season (approximately June to October), farms observe

	​ ​​i,t−b​​  = ​ (​​i,t−1​​, ​E​it​​, ​P​ it​ W​, ​​W 
–
 ​​rt​​, ​​{​ω​ic,t−b​​}​​c​​)​,​

decide water inputs ​​W​ict​​​, and, if ​c  =  dairy​, purchase feed, ​​X​ ict​  F ​​. Finally, farms 
learn their final productivity ​​ω​ict​​​ and crop prices ​​P​ict​​​ for each ​c​, as well as wages  
​​P​ X,it​  L  ​​, then finalize labor ​​X​ ict​  L ​​ and annual materials ​​X​ ict​  M ​​ decisions and harvest crops ​​
Q​ict​​​ (November to March). The cycle then begins anew.

The estimator below is not sensitive to every detail of this timing and informa-
tion structure. Irrigation can occur at any time ​t − b​ for ​b  ∈ ​ [0, 1]​​; for example, 
farms can commit to irrigation alongside planting or at the same time as hiring labor  
and/or buying materials. The empirical strategy primarily requires that (i) land 
decisions are determined at the start of the season, (ii) irrigation responds to 
water-sharing rules and is not chosen after the final materials decision with new 
information, and (iii) the farm knows its productivity and prices when it finalizes its 
labor and materials decisions.

C. Other Economic Assumptions

The main focus of this paper is water trading and the role of irrigation in produc-
tion. I impose the following restrictions on the remaining economic environment, 
necessary both for the empirical strategy and for valuing water reallocation, which 
requires interpreting the physical output given by (2) in economic terms.

Output Markets.—Agricultural producers are small and agricultural commodities 
exhibit minimal differentiation relative to many other consumer goods. Australia 
also exports about two-thirds of its agricultural output. I therefore assume that farms 
take crop prices ​​P​ict​​​ as given for each ​c​.

Labor and Materials.—Labor is mobile, agricultural wages do not differ sub-
stantially across farms (coefficient of variation of 0.207 across farm-years), and 
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other inputs such as seed, fertilizer, and electricity are relatively undifferentiated and 
likely to be supplied competitively. I therefore assume farms take wages and mate-
rials prices ​​P​X,it​​​ as given. I observe expenditures on materials rather than physical 
quantities, and assume that in each year, materials prices do not differ across farms. 
Observed wages can and do vary across farms, but the empirical strategy below 
requires that neither materials nor labor costs do not differ unobservably across firms.

I also suppose that labor and materials are set to maximize annual profits, as in 
Levinsohn and Petrin (2003). This rules out all dynamic aspects of these factors, 
such as labor adjustment costs that depend on past levels, or current materials that 
affect future output. The assumption on labor can be relaxed (Ackerberg, Caves, 
and Frazer 2015), but delivers three main advantages in my setting: (i) increased 
precision, because the labor elasticity can be estimated in a first stage; (ii) a micro-
foundation for using elasticity-weighted revenue shares to assign labor (observed at 
the farm level) to crop types; and (iii) a closed-form representation for the response 
of labor demand to water reallocation.

The assumption on materials, however, is crucial to the empirical strategy. It 
means that materials demand under the timing of Section IIB admits a nonparamet-
ric representation,

(6)	​ ​X​ ict​  M ​  = ​ χ​ct​​​(​W​ict​​, ​R​ict​​, ​K​ict​​, ​X​ ict​  L ​, ​X​ ict​  F ​, ​P​ict​​, ​ω​ict​​)​,​

which can be used, under the additional statistical assumptions below, to control 
for productivity’s persistence over time. Note that, in contrast to the market for 
materials, where (6) rules out any other friction that creates variation across farms, 
water market access may differ unobservably across farms and over time. This flex-
ibility is important given that actual water prices and trading constraints evolve over 
the growing season and differ across the river network (Section IE).

III.  Empirical Strategy

The empirical strategy to identify and estimate the multifactor production func-
tion in Section  II must account for the dynamic dependence of irrigation, labor, 
materials, and land decisions on productivity. First, Section IIIA introduces statisti-
cal assumptions that allow me to control for the expected component of productivity 
by inverting static materials demand. Second, Section  IIIB introduces an instru-
ment for irrigation based on water-sharing rules. Section  IIIC discusses how the 
water rights instrument weakens some of the restrictions on water market structure 
and irrigation decisions that would be implied by standard methods of identifying 
production functions. Section IIID describes the first-order conditions used for the 
remaining two flexible factors and Section IIIE specifies the estimating equations.

A. Assumptions

The following allows observed materials to proxy for unobserved productivity:

ASSUMPTION 1: Materials demand ​​χ​ct​​​, given in (6), is strictly increasing in ​​ω​ict​​​ 
for all ​c​ and ​t​.
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Assumption 1 is both an economic restriction—that firms make static, optimal 
materials decisions that differ only through the arguments of (6)—and a statistical 
restriction that unobserved productivity is scalar and continuously distributed. The 
strict monotonicity of materials demand in productivity follows from static opti-
mality if firms take materials and final goods prices as given and ​​F​c​​​ is everywhere 
strictly increasing in ​​X​ ict​  M ​​ (as in the nested CES form (2) when ​​β​cM​​  >  0​).

The estimator below identifies the production function using instruments orthog-
onal to the productivity innovation, defined for each ​i​, ​c​, and ​t​ as

(7)	​ ​ξ​ict​​  = ​ ω​ict​​ − E​[​ω​ict​​ | ​​i,t−1​​]​.​

Given that ​​​i,t−1​​​ as defined in (5) is large and contains information that cannot 
be observed in any finite panel, any study of (7) requires some restriction on the 
dependence of ​​ω​ict​​​ on ​​​i,t−1​​​. In particular, to guarantee the existence of the Markov 
decomposition

(8)	​ ​ω​ict​​  =  E​[​ω​ict​​ | ​​i,t−1​​]​ + ​ξ​ict​​

	 ≡ ​ ψ​ct​​​(​ω​ic,t−1​​)​ + ​ξ​ict​​,​

which allows (7) to be recovered from the path of ​​​(​ω​ict​​)​​t≥0​​​ with ​​ψ​ct​​​, I assume the 
following.

ASSUMPTION 2 (Markov): Productivity ​​​(​ω​ict​​)​​t≥0​​​ evolves as an exogenous, 
first-order Markov process for each ​i​, ​c​, and ​t​.

Assumption 2 allows for a wide family of productivity processes. In particular, it 
makes no distributional assumption on the cross-sectional productivity innovation, ​​
ξ​ict​​​. Its key restrictions are twofold. First, as discussed in Section IIA, farms can-
not influence the evolution of productivity over time. Second, Assumption 2 rules 
out higher-order productivity processes, such as forms of soil depletion that unfold 
over several years. This first-order restriction is nontrivial because of Assumption 
1: although any finite-order Markov process admits a first-order representation in 
an appropriately extended state space, such an extension is inconsistent with A1’s 
single-index restriction.

B. Water Rights Instrument

Even when the anticipated component of productivity is known (or controlled for 
as in Section IIIE), the flexible factors still depend on the productivity innovation, 
which will bias a production function estimated without instruments. The timing of 
agricultural input decisions given in Section IIB suggests several potential sources 
of variation in water inputs, though some of these (e.g., water prices) are likely 
endogenous. I use

(9) ​ ​Z​ ict​  W ​  = ​ {​
​ρ​i  0​​​​W 

–
 ​​rt​​,​ 

if c  =  annual irrigated crops, pasture, or perennial crops;
​      

​E​ it​  R​,
​ 

if c  =  annual nonirrigated crops.
 ​​ ​
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For irrigated crops, the instrument for water is the interaction of annual regional 
allocations, ​​​W 

–
 ​​rt​​​, and a farm’s initial water endowment at baseline, ​​ρ​i  0​​​. Interacting 

allocations and historical endowments acts to increase the variation from the 
region-year to the farm-year, improving precision with a predetermined measure of 
the irrigation operation’s size. These permanent rights were inherited well before 
the time of planting, and the identification strategy controls for the anticipated com-
ponent of productivity at the time of planting, making such characteristics a natu-
ral source of identifying variation within the model.15 For nonirrigated crops, the 
instrument for water is farm-specific rainfall, which provides exogenous variation in 
(rain)water applied to the crops given the predetermined land decision.

The instruments in (9), where relevant, will identify the relationship between 
irrigation and agricultural production if water allocation rules ​​​W 

–
 ​​rt​​​ satisfy

(10)	​ E​[​ρ​i  0​​​​W 
–
 ​​rt​​ ​ξ​ict​​ | ​​i,t−b​​]​  =  0​

for each ​i​, ​c​, and ​t​. This assumption is satisfied if a farm’s productivity shock is 
conditionally independent from river diversion caps and baseline water rights, given 
the farm’s expected productivity and planting decisions at the start of the year. 
The primary justification for this assumption is the mechanical nature of diversion 
formulas.16

The primary threat is that the current and historical environmental conditions 
that determine allocation caps directly affect crop productivity innovations. To some 
extent, controlling for rainfall and crop evapotranspiration over the growing cycle 
mitigates this concern. In addition, the control for expected productivity allows allo-
cations to be correlated with past levels of productivity. Exclusion is likely satisfied 
in cases where productivity shocks arise from a farmer’s specific skills in growing 
certain crops and the farm’s exposure to wind, sun, or other local conditions that 
year. In contrast, exclusion rules out innovations in productivity that arise primarily 
from unexpected regional shocks correlated with diversion cap announcements—
for example, if greater inflows from the high mountain ranges lead to more generous 
diversion caps and also correlate with a warmer spring and lower likelihood of frost.

Another concern, independent of the economic interpretation of productivity, is 
that river extraction caps may be determined by political processes that react to 
farms’ annual productivity shocks. For example, a regulator may seek to maximize 
output and take advantage of high productivity shocks by releasing more water from 
the reservoirs. Alternatively, a regulator may have distributional motives and aim 
to compensate farms with greater regional water allocations when they have low 
productivity shocks (and higher marginal utilities of consumption). Although water 
market institutions clearly reflect agricultural interests, both the rules in Schedule E 
and my conversations with river operators at MDBA suggest that regulatory agencies 

15 This will not be the case if inherited water entitlements affect future crop productivity innovations through 
unobserved states that cannot be inferred directly from the productivity process. Although this will violate 
Assumption 2, in practice it may be a real concern. For example, one can imagine unobserved capital investments 
that are correlated with inherited entitlements, informative about the farm’s distribution of productivity shocks, and 
not directly predictable from the productivity process.

16 While it would be ideal to use the direct and exogenous shifters of the nonlinear quantity schemes directly, 
quantity-setting models themselves are confidential.
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follow rigid water-sharing formulas, rather than responding directly to agricultural 
industry interest groups.

C. Discussion of Identifying Variation

The control function approach requires exogenous variation in each flexible 
input, but rules out any variation in demand for materials across all farms growing ​
c​ at ​t​. A perfect control for ​​ω​ict​​​ solves the endogeneity problem in (2) for static 
inputs (Olley and Pakes 1996), but raises functional dependence issues. Ackerberg, 
Caves, and Frazer’s (2015) solution to this functional dependence is to construct 
moments based on the productivity innovation ​​ξ​ict​​​ that control only for the expected 
component of productivity ​​ψ​ct​​​(​ω​ic,t−1​​)​​, but these moments, in turn, require stronger 
identifying assumptions—or better instruments.

First, note that functional dependence is not a concern despite the use of a com-
mon materials demand function. This is because, like Ackerberg, Caves, and Frazer 
(2015), materials demand in (6) is conditioned on other flexible inputs, so those 
other flexible inputs may differ arbitrarily across firms. Here, irrigation may vary 
across otherwise identical farms due to water allocations, water prices, and any 
unobserved constraints on trade realized between planting and irrigation decisions. 
These sources of identifying variation do not affect output except through irrigation 
volumes, so they do not influence the optimal ​​X​ ict​  M ​​ conditional on ​​W​ict​​​ and are there-
fore consistent with the control function.

Second, the water rights instrument given by (9) provides observed variation in 
irrigation outside of the model, thereby replacing some of the assumptions com-
monly used to identify production functions. For example, lagged inputs are com-
monly used as instruments, because observed input choices are highly correlated 
over time (Ackerberg et  al. 2007, p.  4223) and excluded if ​E​[​ξ​ict​​ | ​​i,t−1​​]​  =  0​. 
However, many natural sources of input variation across firms used to break func-
tional dependence, such as adjustment costs or autocorrelated factor prices, can vio-
late ​E​[​W​ic,t−1​​​ξ​ict​​]​  =  0​.17 The water rights instrument, in contrast, allows irrigation 
decisions to depend on the farm’s beliefs about their future productivity innovations, 
serially correlated trading constraints to constrain irrigation decisions over time, 
and the distribution of crop productivities to affect water prices and trading, just not 
allocation rules or predetermined initial rights. This is still a strong assumption, but 
relies primarily on variation generated by the underlying institutions, rather than 
restrictions on equilibrium decisions.

17 For example, if irrigation involves adjustment costs, then a farm’s past irrigation should depend on its beliefs 
about the current distribution of productivity. Alternatively, if irrigation is autocorrelated through autocorrelated 
input prices, then using lagged irrigation as an instrument requires that the distribution of current productivity 
innovations does not correlate with past water prices, so that either past water prices do not depend on beliefs over 
future productivity, or water prices are independent of productivity. Either restriction is problematic in a setting 
where prices depend on forward-looking water storage and the distribution of productivity innovations are a source 
of the gains from trade.
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D. Identification of Other Flexible Factors

Finally, I recover relationships between output, labor, and materials, and infer the 
unobserved assignment of labor and materials to crops for multicrop farms, using 
first-order conditions implied by the continuously differentiable production function 
and the facts that labor and materials are static factors selected optimally at ​t​.

Materials and Labor.—Materials’ contribution to output is not separately iden-
tified from the control using only moments constructed from ​E​[​ε​ict​​]​  =  0​ and  
​E​[​ξ​ict​​ | ​​i,t−1​​]​  =  0​. To identify materials’ contribution to ​​F​c​​​ separately from ​​χ​ct​​​, I 
use (2) and the assumption of static optimality, which imply that ​​β​cM​​​ is identified 
from the first-order conditions,

(11)	​ E​[​ε​ict​​ | ​​it​​]​  =  E​[ln  ​β​cj​​ − ln​(​P​ X,it​ 
   j ​  ​X​ ict​ 

   j ​ )​ + ln​(​P​ict​​ ​Q​ict​​)​ | ​​it​​]​  =  0​

for ​j  =  M​. This contrasts with Ackerberg, Caves, and Frazer (2015), who do 
not estimate ​​β​cM​​​, and instead assume that output is Leontief in materials and a 
“value-added” production function that does not depend on materials, and that mate-
rials are never the limiting factor for production. In addition, while the farm-specific 
wages that I observe are possible instruments for ​​X​ ict​  L ​​, I recover ​​β​cL​​​ using (11) 
for ​j  =  L​, because (11) is more efficient and does not require assuming that  
​E​[​P​ X,it​  L  ​ ​ξ​ict​​]​  =  0​.

Multicrop Farms.—Irrigation volumes, land allocations, and physical output are 
observed at the crop level, but labor and materials only at the farm level. Apportioning 
labor and materials to crop type is not a problem for the 65.5 percent of farms growing 
only a single crop type. To address this for the remaining farms, I apportion farm-level 
labor and materials inputs to crop types using elasticity-weighted realized revenue 
shares.18 This imputation is implied by profit-maximization if labor and materials are 
uniquely assigned to crops and measurement error ​​ε​ict​​​ does not depend on ​c​ for a given ​
i​ and ​t​.

E. Estimation Procedure

The primitives for each ​c​ are the production technology ​​θ​c​​​, productivity distri-
bution ​​{​ω​ict​​}​​, and Markov transition operator ​​ψ​ct​​​. The algorithm proceeds in two 
steps, after recovering labor and materials elasticities from first-order conditions. 
As in Olley and Pakes (1996), I never recover ​​χ​ ct​ −1​​ directly; rather, in a first stage, I 
estimate the sum ​ln  ​F​c​​​( · )​ + ​ω​ict​​  = ​ Φ​ict​​​,

18 I estimate these elasticity weights in a zeroth stage from the revenue shares of farms producing a single crop 
type. If elasticities do not differ across ​c​, unweighted revenue shares can be used directly (e.g., Collard-Wexler 
and De Loecker 2015). Using only single-crop farms for this zeroth stage raises selection concerns if ​​β​cM​​/​β​cL​​​ 
differs significantly for multicrop farms. Here, the estimated distributions of irrigated crop productivities across 
single- and multicrop farms appear nearly identical (online Appendix Table A8). Where selection issues appear 
severe, it may be appropriate to correct the sample used in the zeroth stage for selection, e.g., by matching on 
observables such as farm size.
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(12)	​ ​Φ​ict​​  = ​ Φ​ct​​​(​X​ ict​  M ​; ​W​ict​​, ​R​ict​​, ​K​ict​​, ​X​ ict​  L ​, ​P​ict​​)​,​

to eliminate the measurement error ​​ε​ict​​​. I estimate (12) by regressing ​ln  ​Q​ict​​​ on trans-
formations of

	​ t, ​X​ ict​  M ​, ​W​ict​​, ​R​ict​​, ​K​ict​​, ​X​ ict​  L ​,  and ​ P​ict​​​

to obtain ​​​Φ ˆ ​​ict​​​ and the implied measurement error ​​​ε ˆ ​​ict​​​. I approximate this nonpara-
metric regression with a cubic polynomial; polynomial splines (i.e. with ​k  >  0​ 
knots) as in Chen and Pouzo (2012) yield similar results.

The second stage estimates the remaining parameters of the production function 
and the evolution of productivity, ​​(​θ​c​​, ​ψ​c​​)​​, using

(13)	​ E​[​​(​q​ict​​ − ​f​ict​​ − ​ψ​c​​​(​​Φ ˆ ​​ic,t−1​​ − ​f​ic,t−1​​)​)​ ⊗ ​Z​ ict​ ′ ​ ​]​  =  0,​

where lowercase letters denote natural logs, and ​​f​ict​​​ denotes ​​f​c​​​ evaluated at ​i​’s 
observed inputs in year ​t​. I then estimate (13) using two-step generalized method 
of moments with an algorithm inspired by Ackerberg, Caves, and Frazer (2015, 
Appendix A4) to concentrate out ​​ψ​ct​​​ as described in online Appendix A.1.

IV.  Estimates

I now report the estimated production function parameters, distribution of produc-
tivities, and curvature of production with respect to water. I then show that estimated 
productivity helps predict annual water-trading behavior, argue that the implied 
shadow values of water seem reasonable relative to existing evidence on agricultural 
water demand, and consider robustness to various alternative specifications.

A. Production Technologies

Benchmark estimates of the main production function parameters are reported 
in Table 3. Water plays a significant role in the production of crops for Australian 
farms, with average implied irrigation-output elasticities of 0.246, 0.206, and 0.164 
for irrigated perennial crops, annual crops, and pasture, respectively. The significant 
differences across crop types suggest that the technical differences in these opera-
tions discussed in Section IC translate into meaningful differences for production. 
Within crop types, irrigation elasticities also differ across farm-years—for example, 
the interdecile range of these elasticities for perennial operations is ​​[0.141, 0.326]​​
—reflecting differences in inputs and rainfall as well as the flexibility of the nested 
CES function in (2).

Labor and materials also play significant roles in production, with ​​​β ˆ ​​cL​​ + ​​β ˆ ​​cM​​​ 
ranging from 0.25 (for ​c  =  dairy​) to 0.6 (for annual crops). The relative impor-
tance of these two factors differs by operation, with output in perennial operations 
being about one-and-a-half times more elastic to labor than annual operations, 
consistent with the greater labor inputs required to maintain more sophisticated 
irrigation operation schemes. The estimates of the role of labor in production are 
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in line with existing agricultural production function estimates. For example, the 
review in Mundlak (2001) finds output elasticities with respect to labor ranging 
from 0.25 to 0.45.

While the estimated returns to scale for dairy are close to 1, they exceed 1 for 
both perennial and annual operations, where ​​∑ j​ 

  ​​ ​​β ˆ ​​cj​​  =  1.17​ and 1.13. This could 
reflect unobserved constraints on large-scale expansion (e.g., total landholdings) 
that prevent farms from growing their operations to profit from increasing returns 
from scale.

Table 3—Production Function Estimates

Perennial
Annual  
irrigated

Annual 
nonirrigated Dairy

(1) (2) (3) (4)
Irrigation
Average irrigation-output elasticity ​E​[​ 

∂ ​f​c​​ ____ ∂  w ​]​​ 0.246 0.206 0.230 0.164
(0.037) (0.029) (0.061) (0.051)

Interquartile range of ​​ 
∂ ​f​c​​ ____ ∂  w ​​ across ​i​, ​t​ [0.207, 0.301] [0.151, 0.265] [0.222, 0.240] [0.104, 0.209]

Tenth to ninetieth percentile range [0.141, 0.326] [0.087, 0.297] [0.215, 0.245] [0.075, 0.263]

Water-land aggregator
Scale coefficient, ​​β​cW​​​ 0.631 0.526 0.311 0.782

(0.047) (0.070) (0.097) (0.043)
Irrigation share, ​​α​c​​​ 0.599 0.513 — 0.385

(0.046) (0.016) (0.125)
Land share, ​1 − ​α​c​​​ 0.401 0.487 0.409

(0.046) (0.016) (0.007)
Rainwater coefficient, ​​ϑ​c​​​ 1.081 1.048 0.591 0.148

(0.151) (0.163) (0.007) (0.245)
Elasticity of substitution, ​​σ​c​​​ 1.575 1.451 3.211

(0.199) (0.218) (1.137)

Other factors
Labor elasticity, ​​β​cL​​​ 0.352 0.201 0.335 0.147

(0.016) (0.015) (0.027) (0.007)
Materials elasticity, ​​β​cM​​​ 0.186 0.404 0.558 0.110

(0.008) (0.021) (0.030) (0.003)
Feed share, ​​α​F​​​ 0.615

(0.125)
Pasture-feed elasticity of substitution, ​​σ​F​​​ 3.331

(2.161)
Returns to scale, ​​∑ j​ 

  ​​ ​β​cj​​​ 1.169 1.131 1.204 1.039
(0.050) (0.081) (0.088) (0.043)

J-statistic 0.969 1.103 1.456 1.004
Adjusted R2 0.807 0.797 0.802 0.876

Observations 510 170 208 254

Notes: Results from the generalized method of moments procedure described in Section III using the nested CES 
production function given by (2). Each column contains separately estimated production functions for each type. 
For irrigated/nonirrigated annual crops, first-stage labor and materials elasticities are estimated pooling across both 
crop types. Instruments are regional water allocations interacted with previous period’s water rights for irrigated ​c​ 

and rainfall for nonirrigated ​c​ as described in Section IIIB. Mean, interquartile, and interdecile ranges of ​​{​ ∂ ​f​c​​ _ ∂  w ​}​​ cal-

culated at observed inputs over all ​i​, ​t​. Adjusted ​​R​​ 2​​ reports the fit of the first-stage polynomial ​​​Φ ˆ ​​ict​​  =  ​ω​ict​​ + ​f​ict​​​ on ​​
q​ict​​​. Standard errors block-bootstrapped at the farm level (5,000 iterations) in parentheses.
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The distributions of productivity estimates for each crop type, ​​​ω ˆ ​​ict​​  = ​​ Φ ˆ ​​ict​​ − ​​ f ˆ ​​ict​​​,  
are reported in online Appendix Table A7. Within types, irrigated crop productiv-
ities lie within a narrow range, with standard deviations between 0.56 and 1.16. 

In contrast, farm productivities are much more dispersed; ​​​ω ˆ ​​it​​  ≡  ln ​∑ c​   ​​ ​e​​ ​​ω ˆ ​​ict​​​ ​  ​P​ict​​ ​Q​ict​​ ______ 
​∑ c​   ​​ ​P​ict​​ ​Q​ict​​

 ​​ 
has a standard deviation of 2.71. Productivity also persists across farms over time, 

with estimated persistence significantly above zero but also below one. Persistence 
is greatest for perennials (​​​ϱ ˆ ​​c​​  =  0.630​), compared with annual (0.432) and dairy 
(0.324), consistent with the discussion in Section IC that perennial operations have 
relatively fewer options for annual adjustment.

B. Productivity Predicts Trade

A natural preliminary question is whether productivity predicts water trade. 
Table 4 tests this hypothesis by regressing an indicator for buying (selling) water 
allocations on the estimated productivities and the same controls from Table 2. More 
productive farms buy annual water allocations and less productive farms sell water, 
consistent with economic intuition. The positive relationship between trade and pro-
ductivity survives controls for year, region, region-by-year, and farm fixed effects, 
indicating that the estimates of unobserved technology matter for interpreting 
water-trading behavior. Increasing productivity by one standard deviation raises 
(lowers) the probability of buying (selling) annual water by about 32–44 percent 
(33–52 percent) of the mean.

In addition, while past productivity predicts trade, much of the relationship 
between annual productivity and trading decisions appears driven by productivity 
innovations. The even columns of Table 4 decompose the effect of ​​​ω ˆ ​​it​​​ into ​​​ω ˆ ​​i,t−1​​ + ​​ξ ˆ ​​it​​​.  
Water trading positively correlates with the productivity innovation at ​t​, conditional 
on ​​​ω ˆ ​​i,t−1​​​, with a one standard deviation increase in ​​​ξ ˆ ​​it​​​ increasing the probability that ​
i​ buys annual allocations at ​t​ by 8–12 percent and decreasing the sale probability by 
0–9 percent.

C. Water Shadow Values

Also crucial to the value of water reallocation is the derived shadow value of 
water in production. Using the estimated production functions, productivities, and 
realized crop prices, I define each farm ​i​’s “shadow value” function for water at ​t​ 
and crop ​c​ as

(14)	​ ​​λ ˆ ​​ict​​​(W, ​X​ict​​, ​K​ict​​, ​R​ict​​)​  = ​ P​ict​​ ​e​​ ​​ω ˆ ​​ict​​​ E​[​e​​ ​ε​ict​​​]​ ​ ∂ ​F​c​​​(W, ​X​ict​​, ​K​ict​​, ​R​ict​​)​  _______________  ∂ W  ​,​

which is purged of measurement error ​​ε​ict​​​. The rest of this paper omits the constant ​
E​[​e​​ ​ε​ict​​​]​​ in notation where relevant. Equation (14) captures the marginal effect of an 
additional megaliter of irrigation on expected time-​t​ revenue. Note that (14) uses 
(ex ante) productivity, ​​​ω ˆ ​​ict​​​, rather than the traditional Solow residual, ​​​ω ˆ ​​ict​​ + ​ε​ict​​  = ​
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q​ict​​ − ​​ f ˆ ​​ict​​​. In this paper, ​​​ω ˆ ​​ict​​​ is more appropriate to assess dispersion in shadow val-
ues, because farms learn ​​ε​ict​​​ only after making input decisions.19

Two other aspects of the shadow value functions are of note. First, the production 
functions exhibit rapidly diminishing marginal returns to irrigation, as shown by 
the plots of shadow value functions in online Appendix Figure A7. This convexity 
of production in water scarcity will affect the value of trade. Second, at observed 
inputs, the distribution of shadow values across firms exhibits substantial variation, 
both across and between crop types (online Appendix Table A9 and Figure A8). 
Perennial operations, such as vineyards or orchards, have the highest estimated 
values, with median marginal values close to the ninetieth-percentile water price. 
Irrigated annual crops and pasture have much higher values than nonirrigated crops, 
but values significantly less than perennials.

How economically reasonable are these estimated shadow values? The dis-
persion across operation types and years may not be surprising given the wide 
range of demand elasticities for irrigation documented by agricultural economists 

19 More generally, in cases where the assumptions used here to identify production functions are likely to hold, 
using ex ante rather than realized productivity is important to avoid conflating measurement or expectational error 
with factor misallocation. In cases where ex ante productivity cannot be reliably recovered (e.g., due to concerns of 
misspecification), realized productivity may be more appropriate.

Table 4—Water Trading Decisions and Estimated Productivity

Dependent variable:

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A. Buy annual allocations

Productivity, ​​​ω ˆ ​​it​​​ 0.059 0.071 0.069 0.078
(0.019) (0.020) (0.018) (0.030)

Productivity innovation, ​​​ξ ˆ ​​it​​​ 0.086 0.102 0.078 0.147
(0.028) (0.030) (0.028) (0.039)

Lagged productivity, ​​​ω ˆ ​​i,t−1​​​ 0.031 0.045 0.044 0.065
(0.027) (0.028) (0.025) (0.042)

Panel B. Sell annual allocations
Productivity, ​​​ω ˆ ​​it​​​ ​−​0.032 ​−​0.033 ​−​0.036 ​−​0.012

(0.018) (0.018) (0.018) (0.026)
Productivity innovation, ​​​ξ ˆ ​​it​​​ ​−​0.039 ​−​0.029 ​−​0.016 ​−​0.038

(0.029) (0.030) (0.031) (0.040)
Lagged productivity, ​​​ω ˆ ​​i,t−1​​​ ​−​0.053 ​−​0.032 ​−​0.037 ​−​0.051

(0.023) (0.024) (0.022) (0.044)

Year fixed effects ​✓​ ​✓​ ​✓​ ​✓​ ​✓​ ​✓​ ​✓​ ​✓​
Region fixed effects ​✓​ ​✓​ ​✓​ ​✓​
Region ​×​ year fixed effects ​✓​ ​✓​
Farm fixed effects ​✓​ ​✓​
Observations 2,059 976 2,059 976 2,059 976 2,059 976
Adjusted R2 0.116 0.148 0.146 0.181 0.190 0.236 0.401 0.443

Notes: The unit of observation is the farm-year. Regressions of binary indicators of trading water on estimated 
farm productivity and the same controls as Table 2 (natural logarithms of effective rainfall and realized permanent 
water endowments, plus fixed effects). Every regression includes crop type fixed effects. Productivity defined for 

multicrop farms as output-weighted mean: ​​​ω ˆ ​​it​​  ≡  ln ​∑ c​   ​​ exp​(​​ω ˆ ​​ict​​)​ ​  ​P​ict​​ ​Q​ict​​ ______ 
​∑ c​   ​​ ​P​ict​​ ​Q​ict​​

 ​​. Standard errors block-bootstrapped at 
the farm level (2,500 iterations) in parentheses.
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(Scheierling, Loomis, and  Young 2006). The relatively higher estimated values 
for perennials, in particular, align with earlier estimates for the sMDB (Bell et al. 
2007; Hughes 2011). The estimates for annual irrigated and pasture operations are 
also comparable to county-level estimates from García Suárez, Fulginiti, and Perrin 
(2019), who find marginal values of irrigation in the midwestern United States aver-
aging US$196 per acre or about AU$205 per megaliter.

At observed input levels, the last column of online Appendix Table A9 shows that 
shadow values for irrigated farms are similar to average observed water transaction 
prices discussed in Section IE but not used in estimation (see also online Appendix 
Figure A9). Furthermore, the average estimated shadow value of (rain)water for non-
irrigated annual crops is considerably less than the average water transaction price. 
Given that the water price data are not used in estimation and that the shadow values of 
water are not calibrated to equalize the marginal products of water across farms, these 
comparisons suggest the estimated production technologies are not unreasonable.

D. Robustness

The benchmark production function allows for arbitrary productivity, but con-
strains the parameters ​​(​θ​c​​, ​ψ​c​​)​​ to be constant across ​t​. Given the substantial changes in 
environmental conditions and water market prices over 2007–2015, online Appendix 
Tables A10, A11, and A12 test the stability of the production function parameters 
over time. First, I consider differential irrigation efficiency across farms by replacing ​​
W​ict​​​ in (2) with ​exp​(​ζ​ict​​)​​W​ict​​​ as described in online Appendix A.2. I study common 
water-augmenting technical change across farms, which takes the form ​​ζ​ict​​  = ​ ζ​t​​​.  
I also consider efficiency that differs with observed irrigation equipment, ​​ζ​ict​​  = ​
ζ​  irrig​​ 1​{i has irrigation equipment at t}​​. In addition, I partition the data into two peri-
ods (2007–2011 and 2012–2015) and estimate the entire production function ​​(θ, ψ)​​ 
separately for each period.

A separate concern is that the shape of the production function given by (2) 
may unduly constrain the substitution possibilities between factors. Online 
Appendix Tables  A13 and A14 test the sensitivity of results to the elasticity of 
substitution between water and land. The vast literature on agricultural produc-
tion functions in general (Mundlak 2001) provides limited guidance on irrigation 
specifically (Scheierling et al. 2014). I focus on two functional forms commonly 
used in agricultural economics that do not impose a constant elasticity of sub-
stitution between water and land: translog (García Suárez, Fulginiti, and  Perrin 
2019) and quadratic (Shoengold and Zilberman 2007) forms. The irrigation elas-
ticity estimates are less precise, given that both forms double the dimension of  
​​θ​c​​​, but not dissimilar from the main results. In particular, they imply similar 
shadow water value distributions. Online Appendix Table A13 also contains results 
from two important special cases of (2), Cobb-Douglas (​​σ​c​​  =  1​) and Leontief  
(​​σ​c​​  →  0​).

Finally, given the particular importance of rainfall for the value of water, online 
Appendix Tables A16, A17, and A18 show the sensitivity of ​​(​θ​c​​, ​ψ​c​​)​​ to the specifi-
cation of rainfall and evapotranspiration, considering cases in which rainfall does 
not substitute directly for irrigation (​​ϑ​c​​  =  0​) and is a perfect substitute (​​ϑ​c​​  =  1​),  
in contrast to the benchmark estimated ​​ϑ​c​​​. Restricting rainfall’s presence in the 
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production function to total factor productivity (i.e., ​​ϑ​c​​  =  0​) inflates the esti-

mated ​​ ∂ ​​ f ˆ ​​c​​ _ ∂  w ​​ by a factor of more than ​​ 3 _ 2 ​​.

V.  Valuing the Water Market

I now apply the estimates of Section IV—which used irrigation volumes and crop 
yields at the farm level to recover production technologies—to the water trading data 
not used in estimation. I focus on three main results from the market-based water 
reallocation from the initial pretrade endowments described in Section  VA. First, 
water trading reduces dispersion in estimated shadow water values across farms, 
although considerable dispersion remains (Section VB). Second, and most impor-
tantly, integrating over the observed trade flows, the efficiency gains from this reallo-
cation are substantial (Section VC). Third, this value is concentrated in water-scarce 
years and water-scarce regions (Section VD). I then discuss some important limita-
tions (Section VE) and policy implications (Section VF) of these findings.

A. Pretrade Water Allocations

The central exercise of this paper is to contrast observed irrigation under the water 
market with alternative initial water endowments. I obtain the pretrade allocation 
using input levels without annual allocation trades, ​​W​ ict​  a ​  = ​ W​ict​​ − ​Δ​ict​​​. Allocation 
trades are observed as net purchases ​​Δ​it​​​ for each farm. I allocate trade volumes for 
farms growing more than one irrigated crop in proportion to water application rates, 

so that ​​Δ​ict​​  = ​   ​W​ict​​ _____ 
​∑ c′​   ​​ ​W​ic′t​​

 ​ ​Δ​it​​​, though results are insensitive to allocating trade volumes 

optimally across ​c​. This reallocation involves 13.3 percent of total irrigation volume.
The results in the next three sections analyze the value of the market mechanism 

as it operates in the world relative to this distribution of pretrade endowments.

B. Marginal Values and Trade

Water trades that reduce misallocation shift resources from lower to higher-value 
farms. If market-based water allocation increases agricultural output, then water buy-
ers should have higher pretrade shadow values for water than the sellers with whom 
they trade. Although the data do not match buyers with sellers, Figure 2 reports the 
distributions of farm-level pretrade shadow values conditional on the direction of 
trade. The upper panel of Figure 2 shows that water-buying farms have pretrade 
shadow values that are more dispersed and on average greater than water-selling 
farms; the lower panel shows that the first distribution stochastically dominates the 
second. Consequently, on average, the market reallocates water resources to more 
marginally productive farms, though the considerable overlap between these two 
distributions may indicate the presence of residual constraints on trade.

In an efficient water market without trading frictions, shadow values should con-
verge across traders with nonzero posttrade inputs. Online Appendix Figure A10 
shows that the total effect of water trading on the distribution of estimated shadow 
values across all farms is small. A more apparent effect is evident during the drought 
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(2007–2009), but substantial dispersion remains. Online Appendix Table A19 quan-
tifies these effects for water-trading farms using ordinal dispersion measures as in 
Syverson (2004). The estimates show that water trading does reduce the interquar-
tile range of shadow values for water traders in each year. However, none of these 
declines are statistically significant at a 10 percent level.

C. Total Gains from Trade

The marginal analysis above indicates that water market trade flows conform 
to some of the economic predictions that arise from efficient trade. Measuring the 
cost of pretrade misallocation requires an inframarginal calculation to integrate the 
distribution of shadow value functions over the set of observed trades. Using (2), I 
define farm ​i​’s expected profits at the time of harvest ​t​, conditional on water inputs ​​
W​it​​  ≡ ​​ {​W​ict​​}​​c​​​, as

(15)	​​Π​it​​​(​W​it​​)​  = ​ max​ 
​X​it​​

​ ​ ​ ∑ 
c
​ 
 
 ​​ ​ P​ict​​ ​e​​ ​ω​ict​​​  ​F​c​​​(​W​ict​​, ​X​ict​​, ​K​ict​​, ​R​ict​​)​ − ​P​X,it​​ · ​X​ict​​ − ​Γ​ it​ W​​(​W​it​​)​,​

Figure 2. Pretrade Shadow Values

Notes: Conditional probability densities (top) and cumulative distribution function (bottom) of farm-crop-level 
shadow water values, centered at the annual average, evaluated at pre-annual-trade endowments for annual buy-
ers (blue) and annual sellers (red). Nonparametric densities obtained using a Gaussian kernel estimator with a 
Silverman (1986) optimal bandwidth.

0

0.25

0.5

0.75

1

0

0.001

0.002

−500 0 500 1,000 1,500 2,000

Pretrade shadow value (AUD/ML, difference from annual mean)

−500 0 500 1,000 1,500 2,000

Pretrade shadow value (AUD/ML, difference from annual mean)

D
en

si
ty

Pr
(X

 <
 k

)

Subset of farms
Annual buyers

Annual sellers

Subset of farms
Annual buyers

Annual sellers



459RAFEY: VALUING MARKET-BASED WATER REALLOCATIONVOL. 113 NO. 2

which is revenue minus the costs of labor and materials, ​​P​X,it​​ · ​X​ict​​​, and irrigation, ​​
Γ​ it​ W​​(W)​  = ​ P​ it​ W​ ​∑ c​   ​​​W​c​​​, where ​​P​ it​ W​​ denotes the average volume-weighted water price 
in ​i​’s region in year ​t​.20 The value of producing in year ​t​ using equilibrium water 
inputs rather than pretrade water endowments—the “realized gains from trade”—is 
then

(16)	​ ​GFT​t​​  = ​ ∑ 
i
​ 
 
 ​​ ​ Π​it​​​(​W​it​​)​ − ​∑ 

i
​ 
 
 ​​ ​ Π​it​​​(​W​ it​  a​)​​

for ​​W​​ a​​ as defined in Section VA. Note that using (15) to evaluate the gains from 
trade also strengthens the assumption of Section II that farms take crop prices as 
given to the assumption that the water market does not affect final crop prices. This 
rules out general equilibrium effects, such as countercyclical increases in the prices 
of water-intensive crops during water-scarce years, which will arise to the extent 
that sMDB agricultural output influences Australian or world prices.

Table 5 reports the total gains from trade, ​GFT  = ​ ∑ t​   ​​ ​δ​​ t​  ​GFT​t​​​, over 2007–2015, 
taking ​δ  =  1 − ​r –​  =  0.956​ from the real market interest rate ​​r –​​ faced by Australian 
farms during this period ABARES (2017). The total gains from trade equal 5.1 per-
cent of total irrigated output from 2007–2015. Confidence intervals for the total 
gains, ​​[1.6%, 7.1%]​​ at the 90 percent level, clearly bound these gains from zero.21 
This is notable because nothing in the model prevents the estimated gains from trade 
from falling below zero. The net benefits of the market are concentrated in the years 
during the drought (2007–2009), in South Australia, and for perennial and annual 
irrigation operations (online Appendix Table A20). In years in which water is abun-
dant, 2011–2013, zero gains from trade cannot be rejected and the lower bounds of 
the 90 percent confidence intervals lie strictly below zero.

Importantly, the gains from trade estimates do not seem to be driven by the specifi-
cation of production or profit functions. Results for three alternative specifications of 
the production function—translog and the two specifications with water-augmenting 

20 The irrigation cost function assumes that reallocation does not change total conveyance costs and that variable 
irrigation costs differ across farms only through water prices. Because the ABARES survey is not an administrative 
dataset and does not contain all traders, this form of the irrigation cost function also implies that (16) accounts for 
trade surpluses and deficits at market prices.

21 These intervals are block-bootstrapped at the farm level and account for both parametric and trading uncer-
tainty, with ​​(θ, ψ)​​ re-estimated for each draw prior to the calculation of the welfare outcome. Standard confidence 
intervals are constructed with the basic (reverse percentile) bootstrap.

Table 5—Realized Gains from Water Trading

Gains from trade Reallocation

Percent Percent, traders AUD/ML Realloc (percent) Traders (percent)
Annual 0.051 0.091 338.52 0.133 0.51

[0.016, 0.071] [0.037, 0.127] [−21.23, 467.53] [0.117, 0.148] [0.48, 0.53]

Notes: Estimated gains from observed water trading, 2007–2015, from pretrade endowments described in 
Section VA. Gains from trade defined as discounted sum of (16) over ​t​, reported as the fraction of total irrigated 
profits (column 1), total irrigated profits of only water-trading farms (column 2), and total trade volume (column 
3). Columns 4 and 5 show trade volumes divided by total irrigation volumes and the proportion of farm-years with 
nonzero trade balances. Reverse percentile bootstrap confidence intervals reported at the 90 percent level and con-
structed from 5,000 draws block-bootstrapped at the farm level.
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technical change defined in Section IVD—reveal gains from trade that range from 
4.0 to 5.5 percent of output (Table 7, panel E). Results without discounting, as well 
as results that constrain labor and materials adjustment or hold both inputs fixed, 
also resemble the baseline estimates, though constraining the adjustment of flexible 
factors somewhat dampens the gains from trade to between 3.7 and 4.5 percent of 
output (Table 7, panel D).

How do the realized gains from trade compare with similar natural shocks to 
water resources? Consider a uniform reduction in water resource availability across 
all farms that would lower output to its pretrade level. This number, −10.5 percent, 
is the equivalent (uniform water) variation of a price change that eliminates the 
market. For comparison, the most recent climate models run by the Australian gov-
ernment for the sMDB predict median declines of surface water availability of 11 
percent by 2030 due to 1°C of global warming (MDBA 2019). This is not to suggest 
that the annual gains from a water market can offset the adverse effects of climate 
change, but does indicate that the gains are large even relative to other major shocks 
to water resources.

D. Water Scarcity and the Value of Water Market Access

Another vital question that arises from water’s natural variability is whether 
regions receiving particularly low water allocations in a given year (relative to other 
years) realize greater gains from water market access.

Table 6 is the basis for this paper’s claim that the value of a water market is 
increasing and convex in water scarcity. Taking regional water allocations as a proxy 
for water scarcity, panel A stratifies (16) into within-region annual quantiles of real-
ized allocations. The value of water trading is substantial for water-scarce quantiles, 
but declines dramatically for regions receiving more abundant annual surface water 
endowments. Water scarcity amplifies both the extent and cost of misallocation, 
with greater reallocation in below-median years (16 percent relative to 12 percent) 
as well as higher average surplus per trade (AU$570 per megaliter compared with 
AU$221 per megaliter).

Similarly, it is possible to assess whether farms with relatively less rainfall 
have larger estimated gains from annual water trading. The gains from trade for 
below-median-rainfall farms (7.0 percent) is nearly twice that of above-median-rainfall 
farms (4.0 percent). Stratifying by quartile gives gains from trade for farms in the 
bottom rainfall quartile of 11.4 percent, compared with 4.9, 5.9, and 1.7 percent for 
the second, third, and fourth quartiles. Across space, a similar pattern emerges. Panel 
C stratifies farms within each year by quartile of that year’s rainfall. Gains from trade 
are 6.3 percent for farms with rainfall below that year’s median, compared with only 
4.1 percent for farms receiving above-median rainfall. The within-farm differences 
in rainfall over time (panel D) are similar, with gains of 8.5 percent for years with 
below-median rainfall versus 3.1 percent in above-median years.

E. Discussion and Interpretation of Results

The analysis above is limited to recovering the realized value of annual water 
trade. In general, this value will differ in several respects from the overall value of 
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a permanent transition from fixed water property rights to an annual water market. 
Here, I discuss three features likely to be particularly important: first, the extent of 
initial misallocation; second, trading costs; third, longer-run economic responses.

Sensitivity to Initial Allocation.—A crucial caveat to any measure of the value of 
annual water reallocation is its sensitivity to the initial allocation. With a different 
allocation of initial water rights, the gains from trade could be larger or smaller. 
For example, if the initial allocation is close to ex ante optimal, then (16) might 
be interpreted as the value of flexibility from trading over the course of the season; 
alternatively, if the initial allocation is random, then (16) might capture a mixture of 
this value of flexibility as well as some “historical” misallocation.

While the empirical framework does not model the initial allocation of permanent 
water rights, the data provide some ways to assess how the specific choice of the 

Table 6—Water Scarcity and the Gains from Annual Trade

Gains from trade Reallocation

Percent Percent, traders AUD/ML Realloc (percent) Traders (percent)
All 0.051 0.091 338.52 0.133 0.51

[0.016, 0.071] [0.037, 0.127] [−21.23, 467.53] [0.117, 0.148] [0.48, 0.53]

Panel A. Regional water allocations
Below median 0.079 0.122 573.03 0.163 0.58

[0.018, 0.123] [0.039, 0.189] [−251.01, 863.48] [0.140, 0.184] [0.54, 0.61]
Above median 0.035 0.069 221.10 0.122 0.43

[0.011, 0.052] [0.027, 0.101] [39.03, 328.92] [0.102, 0.140] [0.40, 0.46]
Q1 0.114 0.166 713.20 0.185 0.64

[0.067, 0.228] [0.099, 0.333] [101.40, 1,426.22] [0.151, 0.215] [0.60, 0.67]
Q2 0.048 0.079 406.45 0.142 0.50

[−0.060, 0.069] [−0.054, 0.115] [−1,025.55, 600.72] [0.115, 0.168] [0.46, 0.54]
Q3 0.041 0.065 189.98 0.134 0.56

[0.012, 0.070] [0.024, 0.112] [28.93, 325.55] [0.104, 0.164] [0.51, 0.61]
Q4 0.032 0.071 244.66 0.114 0.37

[0.003, 0.050] [0.014, 0.108] [0.14, 373.42] [0.088, 0.137] [0.33, 0.41]

Panel B. Rainfall 
Below median 0.070 0.111 358.90 0.149 0.59

[0.014, 0.111] [0.031, 0.176] [−117.46, 547.44] [0.122, 0.174] [0.56, 0.62]
Above median 0.040 0.076 318.46 0.120 0.41

[0.009, 0.058] [0.029, 0.112] [−11.85, 482.77] [0.102, 0.138] [0.38, 0.44]
Q1 0.114 0.170 587.99 0.177 0.60

[0.058, 0.271] [0.108, 0.400] [200.61, 1,403.26] [0.137, 0.215] [0.56, 0.63]
Q2 0.049 0.080 251.64 0.139 0.58

[−0.024, 0.068] [−0.031, 0.108] [−392.69, 325.67] [0.110, 0.165] [0.54, 0.61]
Q3 0.059 0.083 354.98 0.171 0.58

[0.017, 0.093] [0.028, 0.131] [−61.21, 572.28] [0.144, 0.198] [0.54, 0.62]
Q4 0.017 0.057 224.32 0.068 0.24

[−0.005, 0.027] [0.001, 0.089] [−73.63, 355.07] [0.046, 0.087] [0.20, 0.28]

(Continued)

Notes: Estimated gains from observed annual water trading, for all farms 2007–2015 and then subsets specified by 
row. See Table 5 for additional details. Panel A stratifies the data by ​​​W 

–
 ​​rt​​​ quartile, calculated across years within each 

region; panel B stratifies the data by rainfall quartile calculated over all farm-years. Reverse percentile bootstrap 
confidence intervals reported at the 90 percent level and constructed from 5,000 draws block-bootstrapped at the 
farm level. Online Appendix Figure A11 plots the first column.
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initial allocation affects the results. It is straightforward to recalculate the annual 
gains for alternative initial allocations, but for these comparisons to be meaningful, 
they should involve local, within-sample changes in the distribution of permanent 
rights. Using data on entitlement transfers, Table 7, panel A reports gains from trade 
for two alternative distributions of initial endowments: one, surface and groundwa-
ter entitlements at baseline (rather than at ​t​); two, surface entitlements at baseline 
and groundwater rights at ​t​. The small differences between excluding or including 
permanent trades suggests that the definition of initial endowments is not a major 
driver of the results.

A related but distinct question is how much of the value of annual water trading 
could be attained by changing the initial allocation. Given that trading histories 
are observed for each farm, one way to explore this possibility is to calculate the 
share of (16) that arises from “permanent” traders, defined as farms who buy in 
every year or sell in every year, relative to “idiosyncratic” traders, who buy or sell 
in some years but not others. Idiosyncratic traders account for 73.6 percent of the 

Table 6—Water Scarcity and the Gains from Annual Trade (Continued)

Gains from trade Reallocation

Percent Percent, traders AUD/ML Realloc (percent) Traders (percent)
All 0.051 0.091 338.52 0.133 0.51

[0.016, 0.071] [0.037, 0.127] [−21.23, 467.53] [0.117, 0.148] [0.48, 0.53]

Panel C. Within-year rainfall 
Below median 0.063 0.103 331.36 0.130 0.56

[0.027, 0.102] [0.058, 0.167] [73.09, 537.35] [0.107, 0.151] [0.54, 0.59]
Above median 0.041 0.079 348.80 0.138 0.44

[−0.007, 0.056] [−0.005, 0.107] [−259.76, 472.08] [0.116, 0.159] [0.41, 0.47]
Q1 0.061 0.119 353.54 0.121 0.55

[0.019, 0.122] [0.068, 0.241] [107.73, 713.51] [0.081, 0.155] [0.51, 0.59]
Q2 0.065 0.093 316.96 0.137 0.58

[0.019, 0.101] [0.036, 0.143] [−34.64, 503.07] [0.110, 0.159] [0.54, 0.62]
Q3 0.039 0.073 312.53 0.133 0.46

[−0.002, 0.064] [0.003, 0.119] [−122.15, 503.02] [0.105, 0.159] [0.42, 0.50]
Q4 0.042 0.087 395.92 0.145 0.42

[−0.033, 0.063] [−0.046, 0.122] [−738.82, 588.08] [0.109, 0.180] [0.38, 0.47]

Panel D. Within-farm rainfall 
Below median 0.085 0.116 462.39 0.167 0.61

[0.034, 0.136] [0.049, 0.186] [26.30, 733.96] [0.138, 0.195] [0.58, 0.65]
Above median 0.031 0.074 319.78 0.104 0.40

[0.006, 0.058] [0.034, 0.136] [11.22, 591.35] [0.082, 0.124] [0.36, 0.43]
Q1 0.091 0.120 472.06 0.163 0.62

[0.035, 0.142] [0.048, 0.186] [−3.01, 732.64] [0.133, 0.190] [0.58, 0.66]
Q2 0.064 0.102 422.18 0.189 0.60

[0.006, 0.121] [0.027, 0.191] [−170.17, 785.48] [0.138, 0.242] [0.54, 0.67]
Q3 0.021 0.039 211.52 0.105 0.51

[0.004, 0.074] [0.012, 0.135] [−11.12, 825.73] [0.073, 0.137] [0.45, 0.56]
Q4 0.035 0.094 365.91 0.103 0.34

[−0.004, 0.059] [0.032, 0.154] [−108.47, 625.94] [0.076, 0.127] [0.30, 0.38]

Notes: Panels C and D stratify the data by rainfall quartile calculated for each year over all farms (panel C) and 
for each farm over all years (panel D). Reverse percentile bootstrap confidence intervals reported at the 90 percent 
level and constructed from 5,000 draws block-bootstrapped at the farm level. Online Appendix Figure A11 plots 
the first column.
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Table 7—Sensitivity of Gains from Trade

Gains from trade

Percent Percent, traders AUD/ML

Panel A. Sensitivity to initial endowments
Benchmark 0.051 0.091 338.52

[0.016, 0.071] [0.037, 0.127] [−21.23, 467.53]
Initial endowments at ​​t​0​​​, surface + ground 0.057 0.084 348.70

[0.009, 0.083] [0.016, 0.121] [−71.90, 506.91]
Initial endowments at ​​t​0​​​, surface only 0.047 0.070 286.32

[0.011, 0.066] [0.019, 0.100] [−42.24, 409.68]

Panel B. Transaction costs (AU$)
Variable trade costs ($10/ML) 0.049 0.087 323.97

[0.013, 0.068] [0.032, 0.123] [−34.42, 452.99]
Variable and fixed trade costs ($500/trade + $10/ML) 0.049 0.086 320.47

[0.013, 0.068] [0.031, 0.122] [−37.96, 449.52]
Ad valorem trade costs (10 percent of trade) 0.049 0.087 324.23

[0.013, 0.068] [0.032, 0.123] [−34.13, 453.04]

Panel C. Land reallocation
Sellers use 10 percent more land under autarky 0.043 0.076 282.61

[0.008, 0.066] [0.021, 0.119] [−49.92, 438.46]
Sellers use X percent more land under autarky 0.038 0.068 251.36

[0.003, 0.065] [0.012, 0.116] [−76.91, 426.40]
Buyers use 10 percent less land under autarky 0.077 0.137 510.46

[0.036, 0.091] [0.076, 0.162] [52.53, 614.06]
Buyers use X percent less land under autarky 0.095 0.169 625.97

[0.048, 0.109] [0.100, 0.193] [83.45, 735.83]
Sellers, buyers use 10 percent more, 0.082 0.145 538.81
  less land under autarky [0.036, 0.099] [0.077, 0.176] [48.42, 662.92]

Panel D. Profit function
No discounting 0.050 0.088 284.92

[0.015, 0.069] [0.036, 0.123] [−17.87, 393.51]
Labor, materials held fixed at observed levels 0.039 0.072 150.93

[0.015, 0.066] [0.030, 0.122] [49.28, 254.53]
Optimal labor, materials constrained to ​​X​ict​​  ≤  2​X​ict​​​ 0.037 0.068 189.47

[0.016, 0.059] [0.032, 0.108] [67.32, 299.57]
Optimal labor, materials constrained to ​​X​ict​​  ≤  5​X​ict​​​ 0.045 0.080 258.89

[0.020, 0.065] [0.040, 0.118] [88.74, 377.30]

Panel E. Production function
Translog 0.055 0.102 242.37

[0.015, 0.165] [0.031, 0.301] [52.06, 726.18]
Water-augmenting technology I 0.040 0.071 264.38

[−0.002, 0.056] [0.002, 0.101] [−127.87, 372.91]
Water-augmenting technology II 0.048 0.085 316.46

[0.010, 0.071] [0.025, 0.127] [−50.39, 469.44]

Notes: Sensitivity of estimated gains from observed annual water trading from 2007 to 2015 (in Table  5) 
to alternative specifications described in Section  VE (A–C) and Section  VC (D–E). Panels A–B: alterna-
tive endowments and transaction costs defined in Section VE. Panel C: land reallocation counterfactual. For 10 
percent, sellers’ ​​K​ ict​  a ​  =  1.1​K​ict​​​ and buyers’ ​​K​ ict​  a ​  =  0.9​K​ict​​​. For X percent, sellers’ ​​K​ ict​  a ​  =  min​{​W​ ict​  a ​/​W​ict​​, 1.2}​ · ​K​ict​​​  
and buyers’ ​​K​ ict​  a ​  =  max​{​W​ ict​  a ​/​W​ict​​, 0.8}​ · ​K​ict​​​. Panel E: production functions. “Water-augmenting technology I” 
includes observed irrigation equipment as in (online Appendix equation A5) and “II” includes common irrigation 
efficiency over time as in (online Appendix equation A4). See online Appendix Tables A10–A12 (columns 2, 3, 
and 5) for the production parameters used for these calculations. Reverse percentile bootstrap confidence intervals 
reported at the 90 percent level and constructed from 5,000 draws block-bootstrapped at the farm level.
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total gains from 2007 to 2015, though their influence differs by crop type, with 92.7 
percent of perennial farms’ gains occurring through idiosyncratic trades compared 
with less than half (49.7 percent) for dairy farms. Across regions, idiosyncratic trad-
ing appears more important in South Australia and Victoria Murray (77.5 percent 
and 79.6 percent of gains) than in the Murrumbidgee (65.3 percent). These shares 
indicate some inefficiency in initial endowments—i.e., water entitlement transfers 
could improve allocative efficiency. However, the lion’s share of the estimated value 
of water reallocation occurs through idiosyncratic annual trading, indicating that 
the annual water spot market serves an important role that cannot be replaced by 
permanent transfers of water rights.

Trading Costs.—A second caveat is that the estimates above take the river net-
work’s existing conveyance infrastructure as given and rule out the possibility that 
some of the annual water reallocation involves unavoidable, additional transport 
costs. This assumption reflects the fact that most of the economic costs of allocating 
water across users—such as the conveyance network, irrigation canals, river gauges 
and meters—are also incurred in river systems with fixed water property rights. 
However, some costs of water allocation may be trade specific. Such trade-specific 
costs could include, for example, time and effort spent searching for trading oppor-
tunities, environmental analyses to determine third-party flow externalities, or vari-
ous conveyance and water delivery costs that differ across buyers and sellers.

If there were no water trading constraints, then to the extent that such trade costs 
are incurred by farms, one might take the annual value of a farm’s observed trade 
as an upper bound on its transaction costs using revealed preference. Similarly, 
farm-year-specific trading costs could be bounded below using the valuations of 
nontraders. With trading constraints, however, such bounds cannot be obtained 
because trading costs are not separately identified from constraints. Moreover, many 
costs of water markets are born by other entities, such as local regulators or affected 
third parties, who may be unable to recover costs directly from farms. Such costs 
are not identified from the farm’s problem. Finally, the trading frictions within a 
river network are likely to evolve with investments by stakeholders and with partici-
pants’ and regulators’ experience with trade, further complicating the interpretation 
of such cost estimates.

Despite these identification issues, unavoidable transaction costs specific to water 
trading may play an important role in the adoption and design of water markets 
and it is important to consider the robustness of the results to these concerns. A 
simple way of evaluating the sensitivity of the main empirical results is to aug-
ment (16) with plausible costs of water trading. Table 7, panel B considers three 
forms of transaction costs: variable costs per megaliter, fixed costs per trade, and ad 
valorem costs proportional to the market value of trade, set to AU$20 per megaliter, 
AU$1000 per trade, and 10 percent, respectively, to exceed most reported transac-
tion costs (ACCC 2021, Table C5). None of the scenarios appreciably alter the gains 
from trade, which fall from 5.1 to 4.9 percent in every case. This is not surprising in 
the linear case, given that the external estimates for trade costs fall well below the 
average surplus estimates, but is not immediately obvious in the second and third 
cases, particularly for ad valorem costs, given that higher water prices in the data 
coincide with the years with the largest gains from trade.



465RAFEY: VALUING MARKET-BASED WATER REALLOCATIONVOL. 113 NO. 2

Longer-Run Changes.—Finally, while the assumptions of the annual production 
model in Section II seem appropriate to study annual trade, they rule out several 
aspects of production relevant to evaluating more permanent changes in the eco-
nomic environment. In particular, the empirical framework relies on annual vari-
ation in water to identify the relationship between water and agricultural output 
in (2), which will capture how farms adapt to annual water variability, but not to 
permanent changes. Separately, the gains from trade in (16) hold fixed farms’ total 
land allocation decisions at the start of the growing season. This seems reasonable 
to assess annual water trade motivated by annual fluctuations. However, farmers’ 
longer-run incentives to invest in certain crop types will more generally depend 
on future opportunities to trade. For example, the prospect of water trade during 
drought years may enable some farmers to allocate more land to higher-value peren-
nials that need water on a regular basis. These forms of land reallocation and related 
investments are not captured by the estimated annual gains from trade, but may be 
crucial to water markets’ total value.

To understand the qualitative implications of relaxing these assumptions, con-
sider the case in which irrigation and investment (say, in land) are complements. 
For farms that use less water under the market than under autarky (i.e., those with 
“excessively generous” pretrade water rights), investment and therefore marginal 
values should fall, as these farms had overinvested due to their surfeit of water. In 
contrast, for farms that increase irrigation, investment will become more attractive. 
How the water market transition affects average productivity will depend on these 
two countervailing forces. Whether accounting for investment will raise or lower 
the value of trade relative to (16) depends on the above considerations as well as 
investment costs.

Table 7, panel C evaluates some implications of one potential investment channel, 
land reallocation, on the estimated gains from trade. Though an exact calculation of 
equilibrium land reallocation requires both beliefs as well as land adjustment and 
planting costs, the existing estimates contain the cross-partial derivatives of prof-
its with respect to land and water across water-trading farms, which reveal some 
incentives for land reallocation and their implications for the value of annual water 
trading.

First, I evaluate how the annual gains from trade can overestimate the long-run 
value of trade by ruling out adaptation by water sellers under autarky. Specifically, 
farms without the opportunity to sell water might expand their landholdings. To 
assess the sensitivity of the main results to this possibility, I recalculate (16) assum-
ing that water-selling farms use 10 percent more land under autarky than under 
the market. I also conduct the same exercise assuming that land expands by the 
same percentage as the farm’s irrigation under autarky, up to a 20 percent increase. 
Table 7, panel C shows that the gains from trade fall to 4.3 percent and 3.8 percent 
respectively, but remain sizable.

Second, I conduct a similar exercise to assess the extent to which an annual esti-
mator may underestimate the long-run value of water market access by ruling out 
greater investment by water-buying farms. Specifically, I recalculate gains from 
trade assuming that water-buying farms use 10 percent less land under autarky than 
the market, and then in proportion to the decrease in their water volumes, up to 
no more than 20 percent. The estimates, 7.7 percent and 9.5 percent, indicate that 
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moderate contractions in the planting area of farms under autarky can substantially 
increase the estimated gains from trade.

Finally, to compare the two, I assume that all trading farms adjust their autarky 
land allocations in proportion to trade as above. In this case, the estimated annual 
gains from trade equal 8.2 percent of output, considerably higher than the bench-
mark estimate of 5.1 percent without land adaptation. This indicates that the value 
of land expansion for water-buying farms under the market (relative to autarky) 
exceeds the value of expansion of water-selling farms under autarky (relative to 
the market), which is consistent with the earlier finding that water, on average, 
flows from lower- to higher-value irrigators and a production function where water 
increases the productivity of land.

F. Policy Implications

The empirical results have at least three main policy implications for water 
allocation.

First, the findings inform the extent of government support for water mar-
kets in Australia, which is subject to ongoing policy debate (ACCC 2021). In 
particular, the estimated total gains from trade highlight two relevant aspects of 
these markets. One, while market power and other frictions may exist, the annual 
market’s net effect is to improve allocative efficiency. That is, on average, water 
flows from irrigators with lower marginal products to irrigators with higher mar-
ginal products. This would not be the case if these markets solely functioned to 
enrich unproductive water barons at the expense of more productive local farms, 
as some have suggested. Two, water markets require public investment to monitor 
and coordinate decentralized trade and investigate anticompetitive practices. The 
market’s estimated flow benefits, of about five percent of aggregate irrigated agri-
cultural output (Walsh et al 2021), or AU$2.3 billion over 2007–2015, provide a 
lower bound on the value of maintaining this infrastructure.

Second, the results provide similar qualitative takeaways for policymakers out-
side of Australia interested in allocating water through markets. While they do 
not show that water markets elsewhere will deliver similar efficiency gains, they 
demonstrate that such gains are possible using modern monitoring technology 
in an arid region. This paper also identifies an important source of water mar-
kets’ prospective value, the extent of a river system’s underlying hydrological 
variability. Usefully, many features of this variability can be measured directly 
from historical river inflows and rainfall, without needing to collect economic  
data.

Third, the paper’s empirical findings have implications for water markets in a 
changing climate. While the exact effects on water remain uncertain, there is a con-
sensus that climate change will increase natural water variability. In theory, water 
markets can help to address this variability in at least two ways. Efficient annual 
trade should reallocate water from places of relative abundance to places of relative 
scarcity, lowering the costs of idiosyncratic variability across the river trading net-
work. Furthermore, by increasing the productive efficiency of a basin’s aggregate 
water endowment, a water market makes drier years less costly, helping irrigators 
adapt to aggregate shocks.
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This paper’s results provide empirical support for both of these channels of water 
market value. Water trading appears to make drier years less costly, making water 
reallocation through markets a natural candidate to improve river basins’ resilience 
to greater cyclicality in aggregate water supply. Furthermore, water trading is most 
valuable for places experiencing relative scarcity, making water markets an instru-
ment for adapting to greater variability across the river network. Importantly, the 
hydrological shocks predicted under climate change (MDBA 2010) lie within the 
range of observed water variability (online Appendix Table A21), which supports 
the within-sample estimates as evidence that water markets will become more valu-
able under future climate change.

VI.  Conclusion

Severe droughts and looming climate change have renewed calls for water mar-
kets to allocate resources more efficiently and to forestall increasing scarcity. From 
the viewpoint of economic theory, water markets can improve allocative efficiency 
under ideal conditions, but several hydrological realities make these markets inher-
ently incomplete and imperfectly competitive, and there has been limited evidence 
to date that these markets have delivered benefits in practice.

This paper considers water trading in Australia’s sMDB. To value water and eval-
uate water trading, relative to a world of fixed property rights, this paper estimates 
the production functions for crops that rely on water (i.e., irrigation) using input 
and output data from irrigated farms subject to varying regional water diversion 
limits. Together with price and allocation data, the value of water and trading can 
be recovered, and compared to environments without trade. Usefully, the approach 
does not rely on a specific form of water market access, transaction costs, or trading 
constraints. This allows the paper to test whether the market improves allocative 
efficiency, in contrast to prior approaches, which commonly rely on specific forms 
of water market conduct to infer the value of water or to predict water reallocation.

The main empirical findings show that substantial gains from water trade are 
possible using modern monitoring technology in an arid region. Water trading 
increased producer surplus by 4–6 percent of irrigated agricultural output for sur-
veyed farms. In terms of factor misallocation, more efficient water allocation across 
farms increased the industry’s total factor productivity by approximately one-half 
percent per year during this period, for an industry with annual productivity growth 
of 1–2 percent from 1970 to present. In terms of aggregate water resources, revert-
ing to pretrade endowments lowers output to the same level as an 10.5 percent uni-
form decline in water resources, in a region where climate forecasts project median 
reductions in surface water of 11 percent from 1°C of warming. The gains from 
trade increase substantially during drought, implying that water markets can help 
adapt to natural forms of variability arising from cyclical shocks such as droughts 
and other hydrological changes in a warmer climate.

These findings raise a range of questions for future work, especially related to 
water market design. In particular, the focus on agricultural users while holding 
diversion caps fixed avoids the question of environmental protection, the other pri-
mary value of river water in the sMDB (Grafton et  al. 2011). In addition, many 
of the evolving constraints on trade discussed here arise from decisions by irriga-
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tors and river operators, indicating potential benefits to a coordinated market design 
relative to decentralized bilateral trading, for similar reasons as in electricity mar-
kets (Wilson 2002). Finally, dams and other water storage technologies allow the 
conservation of river water between years, creating water stocks that affect annual 
trade and help to manage future drought risk (Hughes et al. 2013). Understanding 
the value of the intertemporal water trade enabled by such infrastructure will be 
particularly crucial in a world where water resources are less evenly or predictably 
distributed across time.
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